Ученые США впервые зафиксировали гравитационные волны

Когда кто-то говорит что-то про гравитационные волны, многим остается только недоумевать и не понимать, что это вообще такое. Если вы этого не знали, расслабьтесь — даже ученые не могут дать на это развернутый ответ.

Конечно, в целом они понимают, что это такое и откуда берется, но белые пятна в этой истории все равно еще остаются. Даже то, что несколько лет назад их смогли зафиксировать, не дает развернутого ответа на вопрос, что же это такое.

Все из-за того, что они появляются в далеком космосе и уже потом доходят до нас. Примечательно, что предсказал их существование еще Альберт Эйнштейн, а современные ученые только сейчас начинают подбираться к их разгадке.

Понимание того, откуда они берутся и что из себя представляют, пусть и примерное, очень интересно. Попробуем рассказать об этом попроще и без лишних сложных формул.

Ученые США впервые зафиксировали гравитационные волны

Понимание гравитационных волн может дать нам что-то большее, чем просто сами эти волны.

Что такое гравитационные волны

Если говорить грубо, то гравитационные волны — это небольшие искажения пространства и времени. Что-то типа ряби. Причиной их появления становятся события, которые происходят далеко в космосе и имеют действительно эпические масштабы.

О существовании гравитационных волн знали довольно давно, так как еще в 1915 году о них рассказал Альберт Эйнштейн, но одно дело знать, а совсем другое — доказать, показать и объяснить. Этим ученые и занимались почти 100 лет.

Считается, что гравитационные волны, которые были зафиксированы лазерными интерферометрами гравитационно-волновой обсерватории (ЛИГО), образовались от столкновения двух черных дыр, которые превратились в одну большую черную дыру. Зафиксировали гравитационные волны 14 сентября 2015 года.

Лаборатория ЛИГО работает под управлением Калифорнийского технологического института и Массачусетского технологического института. Находится в городах Хэнфорд, штат Вашингтон, и Ливингстон, штат Луизиана, а финансируется за счет средств Национального научного фонда США

Откуда берутся гравитационные волны

Интересно, что событие, которое привело к образованию зафиксированных гравитационных волн, произошло примерно 1,3 миллиарда лет назад, а размер черных дыр, которые тогда столкнулись, был всего в 29 и 36 раз больше нашего Солнца.

Ученые США впервые зафиксировали гравитационные волны

Столкновение двух черных дыр вызывает образование гравитационных волн.

Если верить общей теории относительности — а поводов не верить ей становиться все меньше — пара черных дыр, которые вращаются друг вокруг друг друга, уже сами по себе излучают гравитационные волны и тратят на это очень много энергии.

Самые распространенные мифы о гравитации. Что из этого правда?

Сближение черных дыр для столкновения происходит в течение миллиардов лет, но в последние минуты перед столкновением их скорость очень сильно вырастает.

В итоге, они ускоряются настолько, что столкновение происходит на скорости равной примерно половине скорости света.

Если вспомнить известную формулу, где E=mc2, становится понятно, почему высвобождается так много энергии, если в формуле фигурирует скорость и масса, да еще и в квадрате.

Изучение гравитационных волн

За изучение гравитационных волн даже присуждена нобелевская премия. Получили ее Джозеф Тейлор-младший и Рассел Халс.

В 1976 году они обнаружили бинарную систему, в которой орбита пульсара постепенно снижалась со временем и при этом выделялось большое количество энергии. Они смогли доказать, что это и были гравитационные волны.

Нобелевскую премию они получили в 1993 году за обнаружение пульсара и объяснение происходящего с ним.

Не надо путать объяснение факта существования гравитационных волн и их обнаружение. ЛИГО именно зафиксировала волны, то есть доказала, что все предыдущие открытия не были ошибкой.

Что такое Общая теория относительности Эйнштейна?

Открытие было сделано далеко не с первой попытки и даже не первой версией ЛИГО. Пришлось сначала провести работы по модернизации до второй версии, которая была намного чувствительнее. Зато гравитационные волны после модернизации были открыты практически сразу, буквально при первом запуске.

Ученые США впервые зафиксировали гравитационные волны

Так же одной их причин гравитационных волн называют Большой взрыв.

Работы по модернизации проводились большим количеством исследовательских институтов и лабораторий со всего мира, включая США, Европу и даже Австралию.

Изначально финансирование создания ЛИГО началось в 1992 году, хотя впервые подобный проект был предложен группой ученых еще в 1980 году.

Многие признавали, что это был большой риск, но все равно верили, что они добьются результата.

На данный момент ЛИГО осуществляет исследования, используя огромное научное сотрудничество (LIGO Scientific Collaboration (LSC)). В группу исследователей входит более 1000 ученых из университетов 15 стран мира.

Что будет, если попасть в черную дыру?

Многие из ученых, которые участвуют в исследованиях, считают открытие гравитационных волн началом новой эры, так как теперь область гравитационно-волновой астрономии стала реальна.

Открытие гравитационных волн позволяет человечеству приступить к исследованиям деформированных частей Вселенной. То есть тех объектов, которые сделаны из искривлений пространства-времени. Столкновение черных дыр и следы этого события являются только началом долгого пути. Главное, что теперь этот путь отрыт и можно идти по нему уверенной поступью.

Большой взрыв мог создать «зеркальную антивселенную» нашей Вселенной

Как работает LIGO

В основе каждой из двух лабораторий LIGO используется Г-образные интерферометры длиной 4 километра с лазерными лучами, расщепляющимися на два луча, которые движутся туда-сюда внутри трубы. Ее диаметр составляет примерно 1,2 метра и внутри создан почти идеальный вакуум.

Ученые США впервые зафиксировали гравитационные волны

Если бы Альберт Эйнштейн сейчас, спустя сто лет после своего открытия увидел бы результаты исследований LIGO, он был бы рад, что оказался прав.

Пучки света нужны для того, чтобы можно было контролировать расстояние между зеркалами, которые расположены в разных концах интерферометра.

Теория Эйнштейна гласит, что расстояние между зеркалами будет изменяться на бесконечно малую величину, когда между ними проходит гравитационная волна. Изменения расстояния не должны превышать одной десятитысячной протона. Их-то и надо зафиксировать.

Ученые продолжают работать в этом направлении и о самых интересных их открытиях мы расскажем в нашем новостном Telegram-канале.

Ученые обнаружили неизвестный источник гравитационных волн

Обсерватории должны быть именно разнесены на большое расстояние, чтобы определить направление событий, которые и являются причиной гравитационных волн. Заодно так можно убедиться, что волны пришли именно из космоса и не связаны с местными явлениями.

Первое наблюдение гравитационных волн позволило ускорить строительство глобальной сети, состоящей из огромного количества детекторов. Они позволяют не только закрепить результат, но находить еще больше источников гравитационных волн. В будущем это действительно откроет новые возможности, но пока надо подождать и не мешать ученым работать.

Впервые зафиксированы гравитационные волны от столкновения нейтронных звезд

17 августа 2017 года лазерно-интерферометрическая гравитационно-волновая обсерватория LIGO и франко-итальянский детектор гравитационных волн VIRGO впервые зафиксировали гравитационные волны от столкновения двух нейтронных звезд. Примерно через две секунды после этого космический гамма-телескоп NASA «Fermi» и астрофизическая гамма-лаборатория ESA «INTEGRAL» наблюдали короткий гамма-всплеск GRB170817A в той же области неба.

«Ученому редко выпадает случай стать свидетелем начала новой эры в науке. Это – один из таких случаев!» – сказала Елена Пиан из Астрофизического института Италии, автор одной из публикуемых в Nature статей.

Что такое гравитационные волны?

Гравитационные волны, создающиеся движущимися массами, являются маркерами самых жестоких событий во Вселенной и возникают при столкновении плотных объектов, таких как черные дыры или нейтронные звезды.

Их существование было предсказано еще в 1916 году Альбертом Эйнштейном в Общей Теории Относительности. Однако, зафиксировать гравитационные волны удалось только спустя сто лет, поскольку только самые мощные из этих волн, обусловленные быстрыми изменениями скорости очень массивных объектов, могут быть зарегистрированы современными приемниками.

До сегодняшнего дня было поймано 4 сигнала гравитационных волн: трижды LIGO в одиночку фиксировал «рябь» пространства-времени, а 14 сентября 2017 года впервые гравитационные волны были пойманы сразу тремя детекторами (двумя детекторами LIGO в США и одним детектор VIRGO в Европе).

У четырех предыдущих событий есть одно общее – все они вызваны слиянием пар черных дыр, вследствие чего увидеть их источник невозможно. Теперь все изменилось.

Как обсерватории по всему миру «ловили» источник гравитационных волн

Совместная работа LIGO и VIRGO позволила позиционировать источник гравитационных волн в пределах обширного участка южного неба размером в несколько сотен дисков полной Луны, содержащего миллионы звезд. Более 70 обсерваторий по всему миру, а также космический телескоп NASA «Hubble» принялись наблюдать этот район неба в поисках новых источников излучения.

Первое сообщение об обнаружении нового источника света поступило спустя 11 часов с метрового телескопа «Swope». Оказалось, что объект находился очень близко к линзовидной галактике NGC 4993 в созвездии Гидры.

Почти в то же время тот же источник был зарегистрирован телескопом Европейской южной обсерватории ESO «VISTA» в инфракрасных лучах.

По мере того, как ночь продвигалась по земному шару на запад, объект наблюдался на Гавайских островах телескопами «Pan-STARRS» и «Subaru», причем была отмечена его быстрая эволюция.

Ученые США впервые зафиксировали гравитационные волны Вспышка от столкновения двух нейтронных звезд в галактике NGC 4993 хорошо видна на снимке космического телескопа «Hubble». Наблюдения, проведенные с 22 по 28 августа 2017 года, показывают, как она постепенно исчезала. Credit: NASA/ESA

Оценки расстояния до объекта, полученные как из гравитационно-волновых данных, так и из других наблюдений, дали согласующиеся результаты: GW170817 находится на том же расстоянии от Земли, что и галактика NGC 4993, то есть в 130 миллионах световых лет. Таким образом, это ближайший к нам из всех обнаруженных источников гравитационных волн и один из ближайших когда-либо наблюдавшихся источников гамма-всплесков.

Читайте также:  Два из трёх. обзор смартфона lenovo vibe x2

Загадочная килоновая

После того, как массивная звезда взрывается в виде сверхновой, на ее месте остается сверхплотное сколлапсировавшее ядро: нейтронная звезда. Слияниями нейтронных звезд в основном объясняются и короткие гамма-всплески. Считается, что это событие сопровождается взрывом в тысячу раз более ярким, чем типичная новая – так называемой килоновой.

Ученые США впервые зафиксировали гравитационные волны Художественное представление столкновения двух нейтронных звезд в галактике NGC 4993, породившего вспышку килоновой и гравитационные волны. Credit: ESO/L. Calgada/M. Kornmesser

«Это ни на что не похоже! Объект очень быстро стал невероятно ярким, а затем начал стремительно исчезать, переходя от синего цвета к красному. Это невероятно!» – рассказывает Райан Фоули из Калифорнийского университета в Санта-Крузе (США).

Почти одновременная регистрация гравитационных волн и гамма-лучей от GW170817 породила надежду на то, что это и есть давно разыскиваемая килоновая.

Подробные наблюдения на инструментах ESO и космическом телескопе «Hubble» действительно обнаружили у этого объекта свойства очень близкие к теоретическим предсказаниям, сделанным более 30 лет назад.

Таким образом, получено первое наблюдательное подтверждение существования килоновых.

Пока неясно, какой объект породило слияние двух нейтронных звезд: черную дыру или новую нейтронную звезду. Дальнейший анализ данных должен ответить на этот вопрос.

В результате слияния двух нейтронных звезд и взрыва килоновой происходит выброс радиоактивных тяжелых химических элементов, разлетающихся со скоростью в одну пятую скорости света. В течение нескольких дней – быстрее, чем при любом другом звездном взрыве – цвет килоновой меняется от ярко-голубого к очень красному.

«Данные, которые мы получили, великолепно согласуются с теорией. Это триумф теоретиков, подтверждение абсолютной реальности событий, зарегистрированных установками LIGO и VIRGO, и замечательное достижение ESO, которой удалось получить наблюдения килоновой», – рассказывает Стефано Ковино из Астрофизического института Италии, автор одной из публикуемых в Nature Astronomy статей.

Ученые США впервые зафиксировали гравитационные волны Некоторые из элементов, выбрасываемые в космос при слиянии двух нейтронных звезд. Credit: ESO/L. Calçada/M. Kornmesser

Спектры, полученные инструментами на Очень большом телескопе ESO показывают присутствие цезия и теллура, выброшенных в пространство при слиянии нейтронных звезд.

Эти и другие тяжелые элементы рассеиваются в космосе после взрывов килоновых. Таким образом, наблюдения указывают на формирование элементов тяжелее железа при ядерных реакциях в недрах сверхплотных звездных объектов.

Этот процесс, называемый r-нуклеосинтезом, раньше был известен только в теории.

Важность открытия

Открытие ознаменовало рассвет новой эры в космологии: теперь мы можем не только слушать, но и видеть события, порождающие гравитационные волны! В краткосрочной перспективе анализ новых данных позволит ученым получить более точное представление о нейтронных звездах, а в будущем наблюдения подобных событий помогут объяснить продолжающееся расширение Вселенной, состав темной энергии, а также происхождение самых тяжелых элементов в космосе.

Исследования, описывающие открытие, представлены серией статей в журналах Nature, Nature Astronomy и Astrophysical Journal Letters.

Эйнштейн был прав: гравитационные волны существуют

Никита Сафонов |  11 февраля 2016, 13:03

Астрофизики подтвердили существование гравитационных волн, существование которых предсказывал еще Альберт Эйнштейн около 100 лет назад. Их удалось зафиксировать с помощью детекторов гравитационно-волновой обсерватории LIGO, которая находится в США.

Ученые США впервые зафиксировали гравитационные волны

Впервые в истории человечество зафиксировало гравитационные волны — колебания пространства-времени, пришедшие на Землю от столкновения двух черных дыр, произошедшего далеко во Вселенной. Вклад в это открытие есть и у российских ученых. В четверг исследователи рассказывают о своем открытии по всему миру — в Вашингтоне, Лондоне, Париже, Берлине и других городах, в том числе и в Москве.

Ученые США впервые зафиксировали гравитационные волны

На фото имитация столкновения черных дыр

На пресс-конференции в офисе компании Rambler&Co Валерий Митрофанов, руководителю российской части коллаборации LIGO объявил об открытии гравитационных волн:

«Нам выпала честь участвовать в этом проекте и представить результаты вам. Расскажу теперь смысл открытия по-русски. Мы видели прекрасные картинки с изображением детекторов LIGO в США. Расстояние между ними – 3000 км. Под действием гравитационной волны произошел сдвиг одного из детекторов, после чего мы их и обнаружили.

Сначала на компьютере мы увидели просто шум, а потом началась раскачка массы детекторов Хэмфорда. После расчетов полученных данных мы смогли определить, что именно черные дыры столкнулись на расстоянии 1,3 млдр. световых лет отсюда. Сигнал был очень четкий, он вылез из шума очень явно. Многие нам сказали, что нам повезло, но природа сделала нам такой подарок.

Гравитационные волны открыты – это несомненно.»

Астрофизики подтвердили слухи о том, что с помощью детекторов гравитационно-волновой обсерватории LIGO им удалось зафиксировать гравитационные волны. Это открытие позволит человечеству значительно продвинуться в понимании того, как устроена Вселенная.

Открытие произошло еще 14 сентября 2015 года одновременно двумя детекторами в Вашингтоне и Луизиане. Сигнал поступил на детекторы в результате столкновения двух черных дыр. Столько времени понадобилось ученым для того, чтобы убедиться, что именно гравитационные волны были продуктом столкновения.

Столкновение дыр произошло со скоростью около половины скорости света, а это примерно 150 792 458 м/с.

«Ньютоновская гравитация описывалась в плоском пространстве, а Эйнштейн перевел его в плоскость времени и предположил, что оно его искривляет. Гравитационное взаимодействие очень слабое. На Земле опыт по созданию гравитационных волн невозможен. Обнаружить их смогли только после слияния черных дыр.

Смещение детектора произошло, только представьте, на 10 в -19 метра. Руками это не пощупать. Только при помощи очень точных приборов. Как это сделать? Лазерный луч, с помощью которого был зафиксирован сдвиг, уникальный по своей природе.

Лазерная гравитационная антенна второго поколения LIGO вступила в строй в 2015 году. Чувствительность позволяет регистрировать гравитационные возмущения примерно раз в месяц. Это передовая мировой и американской науки, ничего точнее в мире нет.

Мы надеемся, что он сможет преодолеть Стандартный квантовый предел чувствительности», – пояснил открытие Сергей Вятчанин, сотрудник физфака МГУ и коллаборации LIGO.

Стандартный квантовый предел (СКП) в квантовой механике — ограничение, накладываемое на точность непрерывного или многократно повторяющегося измерения какой-либо величины, описываемой оператором, который не коммутирует сам с собой в разные моменты времени. Предсказан в 1967 году В. Б. Брагинским, а сам термин Стандартный квантовый предел (англ. Standard Quantum Limit, SQL) был предложен позднее Торном. СКП тесно связан с соотношением неопределенностей Гейзенберга.

Подводя итоги Валерий Митрофанов рассказал о планах дальнейших исследований:

«Это открытие – начало новой гравитационно-волновой астрономии. По каналу гравитационных волн мы рассчитываем узнать больше о Вселенной. Нам известен состав только 5% материи, остальное – загадка. Гравитационные детекторы позволят увидеть небо в «гравитационных волнах». В будущем мы надеемся увидеть начало всего, то есть реликтовое излучение Большого взрыва и понять, что именно было тогда».

Впервые гравитационные волны были предложены Альбертом Эйнштейном в 1916 году, то есть почти ровно 100 лет назад. Уравнение для волн является следствием уравнений теории относительности и выводятся не самым простым образом.

Канадский физик-теоретик Клиффорд Берджесс ранее опубликовал письмо, в котором говорится, что обсерватория зафиксировала гравитационное излучение, вызванное слиянием двойной системы черных дыр с массами 36 и 29 солнечных масс в объект массой 62 массы Солнца. Столкновение и несимметричный гравитационный коллапс длятся доли секунды, и за это время в гравитационное излучение — рябь пространства-времени — уходит энергия, составляющая, до 50 процентов от массы системы.

Гравитационная волна — волна гравитации, порождаемая в большинстве теорий тяготения движением гравитирующих тел с переменным ускорением. Ввиду относительной слабости гравитационных сил (по сравнению с прочими) эти волны должны иметь весьма малую величину, с трудом поддающуюся регистрации. Их существование было предсказано около века назад Альбертом Эйнштейном.

  Поделиться
  Поделиться

Последнее пророчество Эйнштейна: Физики впервые зафиксировали эхо гравитационных волн

Команда ученых американской обсерватории LIGO заявила в четверг, 11 февраля, о первом экспериментально полученном доказательстве существования гравитационных волн. Это революционное событие для науки, поскольку физики впервые подтвердили последнее не доказанное на данный момент пророчество Общей теории относительности Эйнштейна.

Ученые США впервые зафиксировали гравитационные волны

Гравитационно-волновая обсерватория LIGO, чьи антенны расположены сразу в двух штатах США, зафиксировала гравитационное возмущение на расстоянии 750 миллионов световых лет от Земли, где постепенное схождение двух черных дыр потрясает саму ткань пространства-времени, являющуюся основой нашей вселенной.

Эксперты сходятся в том, что это открытие ляжет в основу следующей премии по физике от Нобелевского комитета.

Впервые экспериментальные данные подтверждают предположение, сделанное Альбертом Эйнштейном почти сто лет назад и лежащее в основе его Общей теории относительности.

Данные проекта LIGO открывают новую эру изучения вселенной — эру гравитационно-волновой астрономии.

Гравитационные волны смогут рассказать ученым новые подробности жизни черных дыр, смерти звезд и других явлений, данные о которых не могли быть получены с помощью традиционных методов астрономических наблюдений.

Мимолетный всплеск гравитационных волн был зафиксирован антеннами LIGO, направленными вглубь космоса — туда, где на расстоянии 750 миллионов световых лет вращаются, постепенно сливаясь друг с другом, две черные дыры, масса каждой из которых примерно в 30 раз превыщает массу Солнца.

Классическая ньютоновская механика и представления о силе тяжести предполагают, что эти космические объекты схлопнулись бы вместе под действием гравитации, в статичной и незыблемой структуре вселенной.

Однако Общая теория относительности утверждает, что наблюдаемые учеными две черные дыры сливаются, потому что гравитация искривляет единую ткань пространства-времени, создавая на ней гравитационные волны, сжимающие пространство в одном направлении, и растягивающие в другом.

Читайте также:  Быстрый обзор Xiaomi Mi A2: новый «король» по качеству камер и процессору дешевле 20 тысяч рублей

Так, в 1978 году радиастрономы Джозеф Тейлор-младший и Рассел Халс, описывая похожее сближение двух нейтронных звезд, одна из которых была пульсаром, источником электромагнитного излучения равной периодичности, по графику этого излучения определили, что звезды теряют энергию и сближаются именно с той скоростью, которую можно было бы ожидать, если бы те излучали гравитационные волны. За свое открытие Тейлор и Халс получили Нобелевскую премию в 1993 году.

via GIPHY

В отличие от других известных нам видов излучения, таких, как свет или звук, гравитационное излучение или гравитационные волны, как их принято называть, не путешествуют «сквозь» пространство; они — колебания самого пространства-времени, распространяющиеся во всех направлениях со скоростью света.

Само наблюдение, которое позволило физикам заявить сейчас о существовании гравитационных волн, было проведено антеннами LIGO еще в сентябре 2015.

Две антенны-детекторы LIGO, расположенные в Хэнфорде, Вашингтон и Ливингстоне, Луизиана, были в прошлом году подвергнуты модернизации и представляют из себя мощные лазеры между двух перпендикулярных 4-километровых балок-детекторов.

Когда гравитационный «океан» спокоен, балки уравновешивают друг друга. Однако гравитационное эхо слияния двух черных дыр чуть сжало одну из балок, растягивая другую.

Обе антенны зафиксировали возмущение в одно и то же время, что позволяет с уверенностью утверждать, что их источником был космос, а не проезжающая мимо по шоссе груженая фура.

Физик Кип Торн из Калифорнийского технологического университа, который еще в 70-е годы стал одним из основных энтузиастов экспериментальной проверки существования гравитационных волн, считает успех проекта LIGO возможностью по-новому посмотреть на вселенную. «До сих пор, — считает Торн, — мы наблюдали пространственно-временной океан в штиль, но никогда не видели его объятым штормом гравитационных волн. Там просто обязаны быть удивительные сюрпризы, которые всегда появляются, когда открываешь новое окно».

В космосе нашли гравитационные волны, меняющие пространство и время. что это значит?

Гравитационные волны — изменения гравитационного поля, распространяющиеся подобно волнам. Излучаются движущимися массами, но после излучения отрываются от них и существуют независимо от этих масс. Математически связаны с возмущением метрики пространства-времени и могут быть описаны как «рябь пространства-времени». 

Ученые США впервые зафиксировали гравитационные волныПоляризованная гравитационная волна

В общей теории относительности, а также в большинстве других современных указано, что гравитационные волны появляются от движения массивных тел с переменным ускорением. Гравитационные волны свободно распространяются в пространстве со скоростью света. Они имеют весьма малую величину, с трудом поддающуюся регистрации.

Гравитационные волны впервые они были обнаружены в сентябре 2015 года двумя детекторами-близнецами обсерватории LIGO, на которых были зарегистрированы гравитационные волны, возникшие, вероятно, в результате слияния двух черных дыр и образования одной более массивной вращающейся черной дыры. 

Любая двойная звезда при вращении ее компонентов вокруг общего центра масс теряет энергию (как предполагается — за счет излучения гравитационных волн) и в конце концов сливается воедино. Но для обычных, некомпактных, двойных звезд этот процесс занимает очень много времени, намного больше настоящего возраста Вселенной.

Если же двойная компактная система состоит из пары нейтронных звезд, черных дыр или их комбинации, то слияние может произойти за несколько миллионов лет. Сначала объекты сближаются, а их период обращения уменьшается.

Затем на заключительном этапе происходит столкновение и несимметричный гравитационный коллапс.

Этот процесс длится доли секунды, и за это время в гравитационное излучение уходит энергия, составляющая, по некоторым оценкам, более 50% от массы системы.

Как находят гравитационные волны?

Регистрировать гравитационные волны достаточно сложно из-за их слабости. Приборами для их регистрации являются детекторы гравитационных волн. Попытки обнаружения предпринимались с конца 1960-х годов.

Гравитационные волны детектируемой амплитуды рождаются при коллапсе двойного пульсара. Подобные события происходят в окрестностях нашей галактики ориентировочно раз в десятилетие.

 Наиболее сильными и достаточно частыми источниками гравитационных волн для гравитационных телескопов и антенн являются катастрофы, связанные с коллапсами двойных систем в ближайших галактиках.

Ожидается, что в ближайшем будущем на усовершенствованных гравитационных детекторах будет регистрироваться несколько подобных событий в год, искажающих метрику в окрестности Земли на 10−21—10−23. 

Два тела, движущиеся по круговым орбитам вокруг общего центра масс

Новые способы обнаружить гравитационные волны

В 2017 году ученые, проводившие эксперимент под названием «Лазерно-интерферометрическая гравитационно-волновая обсерватория» (LIGO), получили Нобелевскую премию по физике за первое в истории прямое обнаружение гравитационных волн, образовавшихся при слиянии двух черных дыр, находящихся примерно в 1,3 млрд световых лет от Земли. Волны, возникшие при этом столкновении, нарушили гравитационно-волновой фон Вселенной и достигли Земли.

Помимо подобных разовых сильных возмущений, которые астрофизики уже научились фиксировать, существует так называемый фон гравитационных волн — постоянный поток гравитационного излучения, которое, согласно теории, постоянно омывает Землю.

Еще одной возможностью обнаружить фон гравитационных волн, заполняющих Вселенную, является высокоточный тайминг удаленных пульсаров — анализ времени прихода их импульсов, которые характерным образом изменяются под действием проходящих через пространство между Землей и пульсаром гравитационных волн.

По оценкам на 2013 год, точность тайминга необходимо поднять примерно на один порядок, чтобы можно было задетектировать фоновые волны от множества источников в нашей Вселенной, и эта задача может быть решена до конца десятилетия.

Но прохождение гравитационной волны должно слегка, на несколько наносекунд, менять время регистрации этих вспышек. Таким образом, точно отслеживая тайминг далеких пульсаров, теоретически можно обнаружить и гравитационно-волновой фон галактики.

Это подтверждают предварительные результаты проекта NANOGrav.

Какие новые гравитационные волны нашли ученые?

Ученые заявили, что им удалось обнаружить признаки постоянного гравитационного излучения, которое проходит через Вселенную и искажает ткань пространства-времени.

Мы обнаружили сильный сигнал в нашем наборе данных. Пока мы не можем сказать, что это фоновые гравитационные волны, но наша цель становится все ближе. 

По словам авторов, никакие другие обсерватории не в состоянии обнаружить фоновые гравитационные волны, потому что ориентированы на поиск разовых событий продолжительностью несколько секунд.

В рамках эксперимента ученые отслеживают 45 пульсаров на протяжении нескольких лет — и уже обнаружили признаки слабых изменений в их периодичности.

Пульсары можно сравнить с галактическими маяками, постоянно находящимися на одном и том же месте.

Проходящие гравитационные волны изменяют устойчивую картину света, исходящего от пульсаров, увеличивая или сжимая относительные расстояния, которые эти лучи проходят через пространство. Другими словами, ученые теоретически могут обнаружить фон гравитационных волн, отслеживая коррелированные изменения времени прибытия на Землю излучения пульсаров.

Что делают эти гравитационные волны?

Проходящие гравитационные волны изменяют устойчивую картину света, исходящего от пульсаров, увеличивая или сжимая относительные расстояния, которые эти лучи проходят через пространство.

Другими словами, ученые теоретически могут обнаружить фон гравитационных волн, отслеживая коррелированные изменения времени прибытия на Землю излучения пульсаров. Тем не менее, для окончательных выводов этого недостаточно.

Поэтому астрономы озвучили планы по созданию IPTA — сети инструментов, которые позволят регистрировать такие отклонения для большого количества пульсаров.

  • Читать далее
  • Исследование: люди не смогут управлять сверхразумными машинами с ИИ
  • Аборты и наука: что будет с детьми, которых родят

Посмотрите на самые красивые снимки «Хаббла». Что увидел телескоп за 30 лет?

Пространство волнуется раз. Пять лет назад мы узнали, что обнаружены гравитационные волны

11 февраля 2016 г. ученые из проекта LIGO объявили, что впервые в истории им удалось напрямую засечь гравитационные волны. Их существование еще за сто лет до того предсказал Альберт Эйнштейн, но не хотел себе верить. ТАСС вспоминает, как было сделано открытие и почему оно стало одним из главных событий в физике в XXI в.

1,3 млрд лет назад далеко-далеко от Земли сблизились две черные дыры и спустя еще 20 мс слились воедино. Из-за колоссальной энергии, выделившейся при столкновении, само пространство-время пошло рябью во все стороны от места катастрофы. 14 сентября 2015 г. в 13:51 по московскому времени эти волны на скорости света достигли Земли.

В многокилометровых тоннелях на противоположных концах США — одних из самых сложных инженерных объектах в мире — друг за другом задрожали зеркала. Колебание зеркал было почти незаметным — с амплитудой в 10-19 м. Это во столько же раз меньше размера атома, во сколько апельсин меньше нашей планеты.

Расчеты, занявшие десятки лет, измерения на грани квантового предела точности, несколько месяцев аккуратных проверок результатов — и 11 февраля в Вашингтоне, Москве, Лондоне, Париже и других городах начались пресс-конференции. Ученые имели сказать одно: человечество впервые зарегистрировало гравитационные волны, и это не могло быть ошибкой. Впереди нас ждали гравитационные телескопы, новая физика и, может, даже новая реальность.

Что такое гравитационные волны?

Если бросить в воду камень, по ней пойдет рябь. Гравитационные волны напоминают такую рябь, только колеблется само пространство-время. Гравитационные волны излучает все, что обладает массой и движется с переменным ускорением, даже тормозящая машина.

Но в этом случае волны так малы, что законы физики не позволяют их уловить. Проще всего гравитационные волны обнаружить после вселенских катастроф — при столкновении черных дыр или нейтронных звезд: сравнительно компактных, но чрезвычайно массивных объектов.

Одни из первых экспериментов по обнаружению гравитационных волн ставили еще в 1970-е гг. на физическом факультете МГУ в группе под руководством профессора Владимира Брагинского.

Тогда прибор, установленный в подвале здания, вроде бы зарегистрировал сигнал, сильный и стабильно повторяющийся каждый вечер. Назревала сенсация.

Но праздник сорвал сам Брагинский: он понял, что прибор регистрировал сейсмический шум от трамваев в расположенном неподалеку депо.

Исследователи, участвовавшие в международном эксперименте BICEP2, были не так аккуратны, как советские физики. В 2014 г. они заявили о неопровержимых следах гравитационных волн в реликтовом излучении, сохранившемся с первых мгновений после Большого взрыва. Но ученые поторопились, не учтя влияние космической пыли при обработке данных.

Читайте также:  20 самых популярных телефонов в мире за всю историю

' Ролик Массачусетского технологического института, где рассказывают об устройстве обсерватории LIGO и гравитационных волнах'

Неоднократные попытки обнаружить гравитационные волны делались и на других гравитационных телескопах, в том числе на детекторах коллаборации LIGO.

Что такое LIGO и гравитационные телескопы?

LIGO (Laser Interferometer Gravitational-Wave Observatory) — это название обсерватории и международного проекта ученых из 14 стран. Россию в LIGO представляют два научных коллектива: группы Александра Сергеева из Института прикладной физики РАН (Нижний Новгород) и Валерия Митрофанова с физического факультета МГУ. Последнюю, кстати, одно время возглавлял тот же Владимир Брагинский.

Обсерватория LIGO состоит из двух комплексов в 3 тыс. км друг от друга в американских штатах Луизиана и Вашингтон. В обоих проложены четырехкилометровые тоннели с зеркалами, по которым пускают лазерные лучи.

Из-за гравитационных волн пространство-время сжимается и растягивается — расстояние, которое проходит пучок света, чуть-чуть меняется, как меняется и время, нужное, чтобы его преодолеть. Эти отклонения и позволяют засечь волну.

В Италии работает похожая обсерватория Virgo, благодаря ей проще определить направление, откуда пришла волна.

Какой сигнал зарегистрировали ученые?

14 сентября 2015 г. зеркала в тоннелях стали колебаться с частотой 150 Гц и немыслимо маленькой амплитудой 10-19 м. После обработки была найдена причина — слияние двух черных дыр на расстоянии 1,3 млрд световых лет от Земли.

Первая была в 29 раз массивнее Солнца, а вторая — в 36 раз. Получившаяся черная дыра потеряла три массы Солнца: столько энергии ушло в виде гравитационных волн.

Будь это свет, а не гравитация, он ненадолго затмил бы всю видимую Вселенную.

В 2017 году за это открытие присудили Нобелевскую премию по физике. Половина награды досталась Райнеру Вайссу, который занимался разработкой детекторов гравитационных волн, еще по четверти — теоретику, инициатору проекта LIGO Кипу Торну и Барри Бэришу, первому руководителю и основателю LIGO.

Что будет дальше?

Сначала ученые надеются обзавестись третьим гравитационным телескопом для своей системы, который будет расположен в космосе. Тогда по характерным задержкам сигналов гравитационных волн исследователи смогут определять точное положение источников так же, как сейчас можно узнать свое точное положение на Земле, обменявшись сигналами с тремя спутниками GPS.

На эту тему

Ученые США впервые зафиксировали гравитационные волны

Гравитационные телескопы позволят лучше изучить Вселенную. Волны, которые они улавливают, ничто не может остановить.

Вдобавок такой телескоп может сканировать сразу все небо: его не нужно наводить в определенную точку или настраивать на одну частоту.

В перспективе многие уникальные астрофизические события первыми будут фиксироваться именно на так, а уже потом с помощью полученных данных будут наводить другие инструменты наблюдения.

Еще ученые надеются увидеть реликтовые гравитационные волны — те, что стали распространяться по Вселенной почти сразу после Большого взрыва. Это позволило бы заглянуть в самое начало времен, а может, разработать единую теорию фундаментальных взаимодействий, для которой теория относительности Эйнштейна будет частным случаем. Пока ее нет, и это одна из главных проблем в физике.

Наконец, кое-что с этого пира может перепасть и нам, простым людям, не мечтающим о теории великого объединения. Что это будет? Передача информации сквозь время, как в фильме «Интерстеллар»? Путешествия во времени? Что-то совершенно немыслимое? Мы не можем этого предсказывать — только ждать и смотреть.

Эйнштейн был прав: ученые обнаружили гравитационные волны — Технологии Onlíner

Американские ученые во время пресс-конференции, проходящей в данный момент в Вашингтоне, сообщили о прямом доказательстве существования гравитационных волн, предсказанных общей теорией относительности Альберта Эйнштейна еще 100 лет назад. Их зафиксировали детекторы американской обсерватории LIGO. Многочисленные слухи, будоражившие научную общественность с осени прошлого года, подтвердились.

Группе ученых удалось еще 14 сентября 2015 года зафиксировать гравитационные волны от слияния двух массивных черных дыр с массами в 36 и 29 наших Солнц в один большой объект в 62 солнечные массы.

Недостающая масса превратилась в энергию гравитационных волн, которые спустя 1,3 млрд лет добрались до Земли.

Тем самым ученые убили двух зайцев: подтвердили существование как черных дыр, так и гравитационных волн.

«Мы можем услышать гравитационные волны. Мы можем слышать Вселенную», — говорили ученые, сравнивая открытие с высадкой человека на Луну. Прослушать щелкающий голос гравитационной волны можно ниже:

Гравитационные волны в теории

Согласно теории, гравитационные волны возникают из-за движения с ускорением массивных космических объектов. Например, черных дыр или пульсаров, вращающихся вокруг единого центра масс. Гравитационные колебания расходятся в пространстве-времени подобно волнам.

Колебания от небольших объектов настолько незначительны, что их практически невозможно зафиксировать современными приборами. Тогда как массивные объекты наподобие черных дыр покрывают рябью пространство-время.

 Эта рябь с одной стороны растягивает пространство, а с другой стороны сжимает его достаточно заметно для фиксации высокоточными приборами.

Одним из таких является лазерно-интерферометрическая гравитационно-волновая обсерватория (LIGO) в США. Она представляет собой две станции, удаленные на несколько тысяч километров друг от друга в разных концах США. Каждая станция имеет два размещенных перпендикулярно плеча длиной 4 км. В них в вакууме запускают лазерные лучи. Сдвиг луча — возможность схватить неуловимую гравитационную волну.

История поиска гравитационных волн

Существование подобных колебаний на глади пространства-времени было предсказано в 1916 году общей теорией относительности Альберта Эйнштейна.

Охота за экспериментальными доказательствами существования этих волн началась в 1969-м, когда физик Джозеф Вебер объявил о своем успехе. По заявлению ученого, ему удалось поймать гравитационную волну с помощью детектора из алюминиевых цилиндров длиной в два метра. Его эксперимент повторить не удалось, а потому выводы Вебера были отвергнуты.

В 1974 году Джозеф Тейлор и Рассел Халс открыли двойную звездную систему PSR B1913+16. Она косвенно подтвердила существование гравитационных волн. Размер орбиты системы сокращается, что свидетельствует о потере энергии ввиду излучения гравитационных волн.

В 2014-м работающие на Южном полюсе с телескопом BICEP2 астрономы заверяли, что нашли доказательства существования гравитационных волн. А точнее, они нашли слабое возмущение, которое могло быть следствием первичных гравитационных волн, гуляющих во Вселенной с момента Большого взрыва. Но ученые ошибались: зафиксированный ими сигнал был вызван межзвездной пылью.

В начале 90-х годов в США одобрили строительство обсерватории LIGO — двух одинаковых станций в штатах Вашингтон и Луизиана. В 2002-м детектор начал работу, но до 2010 года не дал никаких обнадеживающих результатов. Было решено закрыть его на модернизацию. В сентябре 2015-го обновленные станции приступили к работе. Первые результаты обещали озвучить в начале 2016 года.

Впервые зафиксированы гравитационные волны от слияния нейтронных звезд

Исследователям удалось зарегистрировать слияние двух нейтронных звезд. Событие зафиксировали детекторы гравитационных волн и подтвердили около 70 обсерваторий.

17 августа 2017 года гравитационно-волновые обсерватории LIGO (детекторы расположены в США) и Virgo (Италия) зафиксировали сигнал от слияния нейтронных звезд. Сигнал назвали GW170817. Об открытии объявили специалисты Европейской южной обсерватории.

Зарегистрировать сигнал удалось с помощью двух гравитационно-волновых обсерваторий на разных континентах. Первый сигнал принял один из американских детекторов.

На основе небольшой временной разницы между реакцией нескольких детекторов ученые смогли установить направление, где произошло событие. Комбинируя данные около 70 обсерваторий разных типов по всему миру, астрофизики нашли, где слились две нейтронные звезды.

Это произошло на периферии галактики NGC 4993 в созвездии Гидра. Галактику отделяют от нас 40 Мпк (около 130 млн световых лет). Это сравнительно небольшое расстояние.

Прошлые открытия в области гравитационных волн были связаны с событиями, удаленными от Земли на миллиард и более световых лет.

Источником волны стали два объекта массой 1,1 и 1,6 солнечных масс соответственно. Эти объекты намного «легче», чем источники первых обнаруженных гравитационных волн — черные дыры, равные 36 и 29 массам Солнца. Уловить сигнал позволила близость двух звезд к Земле. Нейтронные звезды по массе сопоставимы с Солнцем, но намного плотнее: их радиус может составлять 10–20 км.

Новый сигнал оказался очень долгим по сравнению со «звуком» слияния двух черных дыр, длившимся доли секунды: он был различим на протяжении около 100 секунд.

Отклик отдаленного космического события удалось «поймать» несколькими путями. Помимо гравитационной волны, научные приборы по всему миру обнаружили в той же области неба гамма-всплеск и отклик в инфракрасном, ультрафиолетовом и рентгеновском диапазонах.

Такая комбинация позволила восстановить сценарий космического события. Ученые полагают, что нейтронные звезды постепенно сближались — часть энергии при этом уходила в гравитационные волны.

При слиянии объектов возник мощный гамма-всплеск, который спустя секунды уловили несколько обсерваторий, включая космический телескоп Fermi.

Также открытие позволило получить подтверждение явления «килоновой» — мощной вспышки при слиянии двух массивных объектов.

Предполагается, что «килоновая» в тысячу или более раз мощнее вспышки при зарождении новой звезды.

Кроме того, по данным нескольких наземных и космических телескопов удалось установить, что при слиянии нейтронных звезд формируются некоторые тяжелые элементы: цезий, золото, платина.

В работе, предшествующей открытию, участвовали несколько тысяч астрофизиков со всего мира, включая российских ученых. Результаты исследования будут опубликованы в журнале The Astrophysical Journal Letters.

Ссылка на основную публикацию
Adblock
detector