Разработка Fujitsu позволит ускорить работу памяти NOR и снизить ее энергопотребление

Современному человеку нравится быть мобильным и иметь при себе различные высокотехнологичные гаджеты (англ. gadget — устройство), облегчающие жизнь, да что там скрывать, делающие ее более насыщенной и интересной.

И появились-то они всего за 10-15 лет! Миниатюрные, легкие, удобные, цифровые… Всего этого гаджеты достигли благодаря новым микропроцессорным технологиям, но все же больший вклад был сделан одной замечательной технологией хранения данных, о которой сегодня мы и будем говорить. Итак, флэш-память.

Бытует мнение, что название FLASH применительно к типу памяти переводится как «вспышка». На самом деле это не совсем так. Одна из версий его появления говорит о том, что впервые в 1989-90 году компания Toshiba употребила слово Flash в контексте «быстрый, мгновенный» при описании своих новых микросхем.

Вообще, изобретателем считается Intel, представившая в 1988 году флэш-память с архитектурой NOR. Годом позже Toshiba разработала архитектуру NAND, которая и сегодня используется наряду с той же NOR в микросхемах флэш. Собственно, сейчас можно сказать, что это два различных вида памяти, имеющие в чем-то схожую технологию производства.

В этой статье мы попытаемся понять их устройство, принцип работы, а также рассмотрим различные варианты практического использования.

NOR

Поскольку память с такой организацией считается первой представительницей семейства Flash, с нее и начнем. Схема логического элемента, собственно давшего ей название (NOR — Not OR — в булевой математике обозначает отрицание «ИЛИ»), приведена на рисунке. Разработка Fujitsu позволит ускорить работу памяти NOR и снизить ее энергопотребление

С помощью нее осуществляется преобразование входных напряжений в выходные, соответствующие «0» и «1». Они необходимы, потому что для чтения/записи данных в ячейке памяти используются различные напряжения. Схема ячейки приведена на рисунке ниже.

Разработка Fujitsu позволит ускорить работу памяти NOR и снизить ее энергопотреблениеРазработка Fujitsu позволит ускорить работу памяти NOR и снизить ее энергопотребление

Она характерна для большинства флэш-чипов и представляет из себя транзистор с двумя изолированными затворами: управляющим (control) и плавающим (floating). Важной особенностью последнего является способность удерживать электроны, то есть заряд. Также в ячейке имеются так называемые «сток» и «исток».

При программировании между ними, вследствие воздействия положительного поля на управляющем затворе, создается канал — поток электронов. Некоторые из электронов, благодаря наличию большей энергии, преодолевают слой изолятора и попадают на плавающий затвор. На нем они могут храниться в течение нескольких лет.

Определенный диапазон количества электронов (заряда) на плавающем затворе соответствует логической единице, а все, что больше его, — нулю. При чтении эти состояния распознаются путем измерения порогового напряжения транзистора. Для стирания информации на управляющий затвор подается высокое отрицательное напряжение, и электроны с плавающего затвора переходят (туннелируют) на исток.

В технологиях различных производителей этот принцип работы может отличаться по способу подачи тока и чтению данных из ячейки. Хочу также обратить ваше внимание на то, что в структуре флэш-памяти для хранения 1 бита информации задействуется только один элемент (транзистор), в то время как в энергозависимых типах памяти для этого требуется несколько транзисторов и конденсатор.

Это позволяет существенно уменьшить размеры выпускаемых микросхем, упростить технологический процесс, а, следовательно, и снизить себестоимость. Но и один бит далеко не предел: Intel уже выпускает память StrataFlash, каждая ячейка которой может хранить по 2 бита информации.

Кроме того, существуют пробные образцы, с 4-х и даже 9-битными ячейками! В такой памяти используются технология многоуровневых ячеек. Они имеют обычную структуру, а отличие заключается в том, что заряд их делится на несколько уровней, каждому из которых в соответствие ставится определенная комбинация бит.

Теоретически прочитать/записать можно и более 4-х бит, однако, на практике возникают проблемы с устранением шумов и с постепенной утечкой электронов при продолжительном хранении. Вообще, у существующих сегодня микросхем памяти для ячеек характерно время хранения информации, измеряемое годами и число циклов чтения/записи — от 100 тысяч до нескольких миллионов.

Из недостатков, в частности, у флэш-памяти с архитектурой NOR стоит отметить плохую масштабируемость: нельзя уменьшать площадь чипов путем уменьшения размеров транзисторов. Эта ситуация связана со способом организации матрицы ячеек: в NOR архитектуре к каждому транзистору надо подвести индивидуальный контакт. Гораздо лучше в этом плане обстоят дела у флэш-памяти с архитектурой NAND.

NAND

NAND — Not AND — в той же булевой математике обозначает отрицание «И». Отличается такая память от предыдущей разве что логической схемой. Разработка Fujitsu позволит ускорить работу памяти NOR и снизить ее энергопотребление

Разработка Fujitsu позволит ускорить работу памяти NOR и снизить ее энергопотребление

Устройство и принцип работы ячеек у нее такой же, как и у NOR. Хотя, кроме логики, все-таки есть еще одно важное отличие — архитектура размещения ячеек и их контактов. В отличие от вышеописанного случая, здесь имеется контактная матрица, в пересечениях строк и столбцов которой располагаются транзисторы.

Это сравнимо с пассивной матрицей в дисплеях 🙂 (а NOR — с активной TFT). В случае с памятью такая организация несколько лучше — площадь микросхемы можно значительно уменьшить за счет размеров ячеек.

Недостатки (куда уж без них) заключаются в более низкой по сравнению с NOR скорости работы в операциях побайтового произвольного доступа.

Существуют еще и такие архитектуры как: DiNOR (Mitsubishi), superAND (Hitachi) и пр. Принципиально нового ничего они не представляют, а лишь комбинируют лучшие свойства NAND и NOR.

И все же, как бы там ни было, NOR и NAND на сегодняшний день выпускаются на равных и практически не конкурируют между собой, потому как в силу своих качеств находят применение в разных областях хранения данных. Об этом и пойдет далее речь…

Где нужна память…

Сфера применения какого-либо типа флэш-памяти зависит в первую очередь от его скоростных показателей и надежности хранения информации. Адресное пространство NOR-памяти позволяет работать с отдельными байтами или словами (2 байта).

В NAND ячейки группируются в небольшие блоки (по аналогии с кластером жесткого диска). Из этого следует, что при последовательном чтении и записи преимущество по скорости будет у NAND.

Однако с другой стороны NAND значительно проигрывает в операциях с произвольным доступом и не позволяет напрямую работать с байтами информации. К примеру, для изменения одного байта требуется:

  1. считать в буфер блок информации, в котором он находится
  2. в буфере изменить нужный байт
  3. записать блок с измененным байтом обратно

Если еще ко времени выполнения перечисленных операций прибавить задержки на выборку блока и на доступ, то получим отнюдь неконкурентоспособные с NOR показатели (отмечу, что именно для случая побайтовой записи).

Другое дело последовательная запись/чтение — здесь NAND наоборот показывает значительно более высокие скоростные характеристики.

Поэтому, а также из-за возможностей увеличения объема памяти без увеличения размеров микросхемы, NAND-флэш нашел применение в качестве хранителя больших объемов информации и для ее переноса. Наиболее распространенные сейчас устройства, основанные на этом типе памяти, это флэшдрайвы и карты памяти.

Что касается NOR-флэша, то чипы с такой организацией используются в качестве хранителей программного кода (BIOS, RAM карманных компьютеров, мобилок и т. п.), иногда реализовываются в виде интегрированных решений (ОЗУ, ПЗУ и процессор на одной мини-плате, а то и в одном чипе).

Удачный пример такого использования — проект Gumstix: одноплатный компьютер размером с пластинку жвачки. Именно NOR-чипы обеспечивают требуемый для таких случаев уровень надежности хранения информации и более гибкие возможности по работе с ней. Объем NOR-флэш обычно измеряется единицами мегабайт и редко переваливает за десятки.

И будет флэш…

Безусловно, флэш — перспективная технология. Однако, несмотря на высокие темпы роста объемов производства, устройства хранения данных, основанные на ней, еще достаточно дороги, чтобы конкурировать с жесткими дисками для настольных систем или ноутбуков.

В основном, сейчас сфера господства флэш-памяти ограничивается мобильными устройствами. Как вы понимаете, этот сегмент информационных технологий не так уж и мал. Кроме того, со слов производителей, на нем экспансия флэш не остановится.

Итак, какие же основные тенденции развития имеют место в этой области.

Во-первых, как уже упоминалось выше, большое внимание уделяется интегрированным решениям. Причем проекты вроде Gumstix лишь промежуточные этапы на пути к реализации всех функций в одной микросхеме.

Разработка Fujitsu позволит ускорить работу памяти NOR и снизить ее энергопотребление

Пока что, так называемые on-chip (single-chip) системы представляют собой комбинации в одном чипе флэш-памяти с контроллером, процессором, SDRAM или же со специальным ПО.

Так, например, Intel StrataFlash в сочетании с ПО Persistent Storage Manager (PSM) дает возможность использовать объем памяти одновременно как для хранения данных, так и для выполнения программного кода. PSM по сути дела является файловой системой, поддерживающейся ОС Windows CE 2.1 и выше.

Все это направлено на снижение количества компонентов и уменьшение габаритов мобильных устройств с увеличением их функциональности и производительности. Не менее интересна и актуальна разработка компании Renesas — флэш-память типа superAND с встроенными функциями управления. До этого момента они реализовывались отдельно в контроллере, а теперь интегрированы прямо в чип.

Это функции контроля бэд-секторов, коррекции ошибок (ECC — error check and correct), равномерности износа ячеек (wear leveling). Поскольку в тех или иных вариациях они присутствуют в большинстве других брендовых прошивок внешних контроллеров, давайте вкратце их рассмотрим. Начнем с бэд-секторов.

Да, во флэш-памяти они тоже встречаются: уже с конвейера сходят чипы, имеющие в среднем до 2% нерабочих ячеек — это обычная технологическая норма. Но со временем их количество может увеличиваться (окружающую среду в этом винить особо не стоит — электромагнитное, физическое (тряска и т. п.) влияние флэш-чипу не страшно).

Поэтому, как и в жестких дисках, во флэш-памяти предусмотрен резервный объем. Если появляется плохой сектор, функция контроля подменяет его адрес в таблице размещения файлов адресом сектора из резервной области.

Разработка Fujitsu позволит ускорить работу памяти NOR и снизить ее энергопотребление
Разработка Fujitsu позволит ускорить работу памяти NOR и снизить ее энергопотребление

Собственно, выявлением бэдов занимается алгоритм ECC — он сравнивает записываемую информацию с реально записанной. Также в связи с ограниченным ресурсом ячеек (порядка нескольких миллионов циклов чтения/записи для каждой) важно наличие функции учета равномерности износа.

Приведу такой редкий, но встречающийся случай: брелок с 32 Мбайт, из которых 30 Мбайт заняты, а на свободное место постоянно что-то записывается и удаляется. Получается, что одни ячейки простаивают, а другие интенсивно исчерпывают свой ресурс.

Чтобы такого не было, в фирменных устройствах свободное пространство условно разбивается на участки, для каждого из которых осуществляется контроль и учет количества операций записи.

Читайте также:  10 лучших игр: квесты

Еще более сложные конфигурации класса «все-в-одном» сейчас широко представлены такими компаниями как, например, Intel, Samsung, Hitachi и др. Их изделия представляют собой многофункциональные устройства, реализованные в одной лишь микросхеме (стандартно в ней имеется процессор, флэш-память и SDRAM).

Ориентированы они на применение в мобильных устройствах, где важна высокая производительность при минимальных размерах и низком энергопотреблении. К таким относятся: PDA, смартфоны, телефоны для сетей 3G.

Приведу пример подобных разработок — чип от Samsung, объединяющий в себе ARM-процессор (203 МГц), 256 Мбайт NAND памяти и 256 SDRAM. Он совместим с распространенными ОС: Windows CE, Palm OS, Symbian, Linux и имеет поддержку USB.

Таким образом на его основе возможно создание многофункциональных мобильных устройств с низким энергопотреблением, способных работать с видео, звуком, голосом и прочими ресурсоемкими приложениями.

Другим направлением совершенствования флэш является уменьшение энергопотребления и размеров с одновременным увеличением объема и быстродействия памяти.

В большей степени это касается микросхем с NOR архитектурой, поскольку с развитием мобильных компьютеров, поддерживающих работу в беспроводных сетях, именно NOR-флэш, благодаря небольшим размерам и малому энергопотреблению, станет универсальным решением для хранения и выполнения программного кода.

В скором времени в серийное производство будут запущены 512 Мбит чипы NOR той же Renesas. Напряжение питания их составит 3,3 В (напомню, хранить информацию они могут и без подачи тока), а скорость в операциях записи — 4 Мбайт/сек.

В то же время Intel уже представляет свою разработку StrataFlash Wireless Memory System (LV18/LV30) — универсальную систему флэш-памяти для беспроводных технологий. Объем ее памяти может достигать 1 Гбит, а рабочее напряжение равно 1.8 В. Технология изготовления чипов — 0,13 нм, в планах переход на 0,09 нм техпроцесс.

Среди инноваций данной компании также стоит отметить организацию пакетного режима работы с NOR-памятью. Он позволяет считывать информацию не по одному байту, а блоками — по 16 байт: с использованием 66 МГц шины данных скорость обмена информацией с процессором достигает 92 Мбит/с!

Что ж, как видите, технология развивается стремительно. Вполне возможно, что к моменту выхода статьи появится еще что-нибудь новенькое. Так что, если что — не взыщите 🙂 Надеюсь, материал был вам интересен.

Гибридные жесткие диски становятся реальностью

Разработка Fujitsu позволит ускорить работу памяти NOR и снизить ее энергопотребление

Сегодня стало уже совершенно очевидно, что традиционные жесткие диски обречены на вымирание. На прошедшей выставке Computex Taipei 2007 большинство производителей флэш-памяти представили твердотельные диски нового поколения на основе флэш-памяти (Solid State Disk, SSD), которые имеют ряд значительных преимуществ в сравнении с традиционными HDD-дисками, поэтому неминуемо вытеснят последние с рынка. Конечно, вытеснение HDD-дисков новыми SSD-дисками произойдет не сразу, но этот процесс неизбежен. И точно так же, как в свое время цифровые фотокамеры вытеснили в нишевые сегменты пленочные аналоги, а ЖК-мониторы — ЭЛТ-монитор, место HDD-дисков будет неизбежно занято SSD-дисками.

Уже сейчас SSD-диски выпускаются многими производителями флэш-памяти, а их максимальный объем достиг 128 Гбайт.

Количество циклов записи для SSD-дисков стало сопоставимо с аналогичными характеристиками для HDD-дисков, и их массовому распространению мешает лишь одно обстоятельство.

Они пока еще очень дороги и по такому параметру, как стоимость за один гигабайт емкости, серьезно проигрывают традиционным HDD-дискам.

В то же время в продаже уже появился особый тип дисков — гибридные диски (Hybrid Hard Drive, HHD), которые представляют собой сочетание флэш-памяти и традиционного диска «в одном флаконе» и могут считаться своеобразным переходным вариантом от HDD- к SSD-дискам.

Гибридные жесткие диски имеют ряд бесспорных преимуществ по сравнению с традиционными жесткими дисками. Это и более высокая скорость работы, и меньшее энергопотребление, и пониженный уровень шума, и более высокая надежность.

Но главное из перечисленных преимуществ гибридных дисков заключается в их низком энергопотреблении.

Вращающийся диск — один из наиболее энергозатратных компонентов компьютера. Встроенная в жесткий диск энергонезависимая флэш-память используется в качестве емкого энергонезависимого буфера (NV Cash) для операций записи и чтения данных (см. рисунок).

При записи данные направляются непосредственно в буфер. Когда буфер близок к переполнению, диск «просыпается» и забирает данные.

Благодаря этому гибридный диск позволяет как минимум вдвое снизить уровень энергопотребления (что особенно актуально для портативных ПК).

Минимальный объем флэш-памяти, которая встраивается в гибридные диски, составляет 128 Мбайт, однако для того, чтобы получить ощутимый эффект от использования флэш-памяти в гибридных дисках, рекомендуется устанавливать порядка 4 Гбайт.

Отметим, что поскольку при использовании встроенной флэш-памяти сокращается количество обращений к жесткому диску, то снижается и уровень шума, создаваемого вращающимся диском. Кроме того, поскольку гибридные жесткие диски имеют меньшее энергопотребление, то соответственно уменьшается тепловыделение, а следовательно, можно не использовать вентилятор для охлаждения жесткого диска.

Разработка Fujitsu позволит ускорить работу памяти NOR и снизить ее энергопотребление

Структурная схема гибридного диска

Важно также то, что гибридный жесткий диск, в котором «блины» находятся в неактивном состоянии (не вращаются) большую часть времени, имеет более продолжительное время жизни и меньшую вероятность отказа.

Точно так же, как существует несколько типов флэш-памяти, имеется и несколько способов организации гибридных дисков.

Самый простой способ — использовать в качестве буфера встроенный флэш-диск, то есть микросхему, содержащую флэш-память и ее контроллер, обеспечивающий работу с памятью типа NOR, как с обычным ATA-диском.

Данный способ не требует каких-либо изменений в архитектуре жесткого диска, однако является достаточно дорогим решением.

Второй вариант реализации заключается в том, чтобы использовать в качестве буфера флэш-память типа NAND. Это решение дешевле встроенного флэш-диска, однако нужно учесть необходимость разработать ПО для управления такой памятью. Кроме того, существуют различные типы NAND-памяти, требующие использования разных контроллеров.

Третий вариант реализации гибридных дисков заключается в том, чтобы применять NAND-память вкупе с соответствующим контроллером. При этом решается проблема несовместимости микросхем памяти разных изготовителей, но в данном случае потребуется использовать не одну, а две микросхемы.

Отметим, что гибридные диски во многом напоминают технологию Intel Turbo Memory (ранее она назвалась Robson) компании Intel, которая реализована в ноутбуках на платформе Santa Rosa.

В данном случае флэш-память типа NAND, выполняющая функцию буфера, располагается не на жестком диске, а на системной плате.

Правда, несмотря на схожесть технологии Robson и технологии гибридных дисков, взаимодействие между флэш-памятью, процессором и диском осуществляется в технологии Intel Turbo Memory несколько иначе, чем в гибридных дисках.

Понятно, что для обеспечения возможности работы с гибридными жесткими дисками нужна соответствующая поддержка со стороны операционной системы. На данный момент средства работы с гибридными жесткими дисками, так же как и с технологией Robson, имеются только в новой операционной системе Microsoft Vista (технология Ready Drive).

Технология ReadyDrive будет запоминать типовую последовательность обращения к данным на жестком диске, а затем оптимизировать этот процесс путем размещения часто используемых данных в кэш-памяти. Запуск приложений при этом можно ускорить в два-три раза.

Технология ReadyDrive также распределяет приоритеты для приложений, чтобы ускорить работу основных приложений при наличии фоновых задач.

Гибридные диски будут продаваться под маркой ReadyDrive, которая является товарным знаком Microsoft. Гибридные жесткие диски можно устанавливать и в компьютеры с другими операционными системами, однако преимущества в этом случае проявляться не будут.

Прототипы первых моделей гибридных HHD-дисков были представлены еще год назад. К примеру, в 2006 году на конференции для разработчиков Windows Hardware Engineering Conference (WinHEC), проходившей Сиэтле (шт.

 Вашингтон), компании Samsung и Seagate продемонстрировали прототипы гибридных HHD-дисков со встроенными чипами флэш-памяти. И Samsung и Seagate позиционировали эти гибридные диски для применения в ноутбуках.

В ходе демонстрации новых дисков обращение к пластинам диска при работе офисных приложений происходило один раз в три-четыре минуты, что позволяло снизить энергопотребление диска на 70-90%.

Уже в апреле текущего года компания Samsung объявила о начале поставок первых в мире серийно выпускаемых моделей гибридных жестких дисков — накопителей серии MH80.

Линейка накопителей серии MH80, выполненных в корпусах формфактора 2,5 дюйма, включает модели емкостью 80, 120 и 160 Гбайт. В зависимости от модели объем встроенного модуля флэш-памяти составляет от 128 до 256 Мбайт.

Контроллеры накопителей серии MH80 поддерживают технологию ReadyDrive, реализованную в новой ОС Windows Vista.

Согласно информации разработчиков, уровень энергопотребления гибридных накопителей будет на 70-90% ниже по сравнению с аналогичным показателем обычных жестких дисков, а использование технологии Samsung ReadyBoot позволит сократить время загрузки ОС примерно вдвое.

Отметим, что в дисках Samsung MH80 используется флэш-память типа OneNAND, которая работает гораздо быстрее, чем обычная память NAND.

OneNAND-память представляет собой SLC (Single Level Cell) NAND-память c логикой, позволяющей эмулировать интерфейс NOR флэш-памяти.

В одной микросхеме ячейки флэш-памяти объединены высокоскоростной SRAM-буфер и логический интерфейс, причем это единственный тип NAND-памяти, разработанный для сопряжения с флэш-памятью типа NOR.

Вдобавок такая конструкция минимизирует потери хранящихся данных при отключении питания.

От памяти NOR новый тип памяти унаследовал высокую скорость чтения и записи данных. Кроме того, OneNAND позволяет хранить и быстро копировать в оперативную память исполняемый код, что характерно для микросхем NAND.

Память OneNAND читает данные значительно быстрее, чем традиционная NAND-память, и записывает быстрее, чем обычная NOR-память.

В частности, скорость чтения OneNAND памяти составляет 108 Мбайт/с, а скорость записи — 10 Мбайт/с.

КомпьютерПресс 8'2007

NAND или NOR… какую флэш-память выбрать для проекта?

Различные приложения и выполняемые функции требуют использования различных видов флэш-памяти.

В статье обсуждаются особенности применения NAND- и NOR-памяти для хранения кода программы и данных системы.

Описывается универсальное решение для подсистемы памяти на базе RAM, NAND- и NOR-памяти, сочетающее преимущества обоих типов флэш-памяти. Статья представляет собой сокращенный перевод работы [1].

С момента появления в 70-х гг. прошлого века встраиваемых систем на этом рынке все время ожидали закулисного персонажа под названием «универсальная память», который, наконец, выйдет на сцену и заменит всю иерархию памяти, доставшуюся в наследство от больших ЭВМ, мини-ЭВМ и настольных компьютеров.

Эти ожидания усилились с появлением встраиваемых, мобильных, портативных компьютеров, и кандидаты на роль универсальной памяти появились на сцене.

Читайте также:  Принтер Prepeat позволяет экономить бумагу, стирая напечатанные документы

Некоторые персонажи — такие как EEPROM, EPROM, УФ-EPROM, ферроэлектрическое RAM и др. варианты псевдо-RAM — были отклонены.

Другие кандидаты — например, магнитные RAM, рассматривались, однако их перспективы были сомнительны по ряду экономических и технических причин.

В то же время некоторые действующие лица «пьесы», в частности, различные типы флэш-памяти NAND и NOR, рекламируются производителями как кандидаты на роль универсальной памяти или, по крайней мере, как родственники или близкие друзья этого персонажа. К этим разновидностям флэш-памяти относятся следующие типы устройств: OneNAND, OrNAND, iNAND, GBNAND, moviNAND, ManagedNAND и NANDrive.

Флэш-память является наиболее практичным решением для таких систем, однако ключевое значение имеет выбор типа флэш-памяти, который наилучшим образом подходит для разрабатываемого проекта. Какой же выбор будет оптимальным?

Использование недорогой флэш-памяти NAND большой емкости требует применения системы контроля дефектов, что усложняет подсистему памяти. Кроме того, возникает необходимость поддержки различных типов памяти и интерфейсов разных производителей.

Полностью управляемая подсистема памяти может содержать интерфейс стандартной памяти RAM (PSRAM или SDR/DDR SDRAM). Такая подсистема памяти обеспечивает интеграцию с процессором хоста и исключает необходимость контроля памяти со стороны системы.

NOR-память появилась раньше NAND-памяти и в настоящее время широко применяется во встраиваемых системах. NOR-память используется как для хранения кода программы, так и данных.

Основным ее преимуществом является непосредственное исполнение кода из флэш-памяти (execute-in-place — XIP).

К тому же NOR-память можно непосредственно соединить с хост-процессором, что упрощает проект и уменьшает время разработки.

С ростом использования функций мультимедиа во встроенных системах увеличивается также потребность в объеме хранимых данных и кодов программ. Для таких приложений использование NOR-памяти большой емкости для хранения кодов и данных становится менее рентабельным по сравнению с использованием NAND-памяти. При этом максимальная емкость NOR-памяти в настоящее время ограничена 1 Гбит.

NAND-память для хранения данных и кода

NAND-память удобна для использования в приложениях, требующих хранения кода значительной величины (такого, как операционная система (ОС) или приложение) и больших объемов данных, т.к. NAND-память не дорога, а ее емкость достигает 16 Гбит на кристалл.

В отличие от NOR-памяти, NAND-память не поддерживает непосредственное выполнение кода (XIP) или произвольную выборку. В результате в некоторых системах, использующих NAND-память, требуется также NOR-память малой емкости для системной загрузки и выполнения кода BIOS.

В других системах функции начальной загрузки может выполнять контроллер NAND-памяти или встроенная загрузочная ROM хост-процессора. После загрузки системы на базе NAND-памяти для выполнения кода используется либо затенение кода (shadowing), либо выделение страниц по запросу (demand paging).

В случае затенения вся ОС и приложения копируются из NAND-памяти в системную RAM, а во втором случае — ОС и приложения копируются в системную RAM по частям и выполняются по мере необходимости.

Хотя NAND-память недорога и имеет большую емкость, чем NOR-память, она менее надежна и требует применения технологии контроля дефектов, включая обнаружение и коррекцию ошибок, а также механизм выравнивания износа (wear-leveling) во многих приложениях.

Для реализации этих функций управления флэш-памятью требуются сложные аппаратные и программные средства. На рисунке 1 изображена система, в которой управляющий чипсет (хост) связан с NAND-памятью. В такой системе функции контроля ошибок должны выполняться этим чипсетом.

Запуск функций управления на хосте требует некоторой доработки программного обеспечения, а также использования ресурсов ЦП и памяти хоста, что снижает общую производительность системы.

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Рис. 1. Система, состоящая из чипсета хоста, соединенного с автономной NAND-памятью

С уменьшением проектных норм длина кода коррекции ошибок для NAND-памяти с одноуровневыми ячейками (single-level cell — SLC) увеличилась с 1 до 4 бит на 512-байт сектор, а для NAND-памяти с многоуровневыми ячейками (multi-level cell — MLC) — с 4 до 8 бит на 512-байт сектор. Размер страницы увеличился с 512 до 4096 байт.

Ресурс некоторых типов SLC NAND-памяти с уменьшенными проектными нормами снижен со 100 тыс. до 50 тыс. циклов перезаписи, а для MLC NAND-памяти — с 10 тыс. до 5 тыс. циклов (в некоторых случаях до 3 тыс. циклов).

Для того чтобы снизить количество элементов в системе, многие производители интегрируют контроллер NAND-памяти в чипсет, который непосредственно подключается к отдельной NAND-памяти. Однако из-за длительного цикла проектирования производителю чипсета довольно сложно отслеживать изменения в технологии NAND-памяти.

Поэтому функциональные возможности встроенного в чипсет контроллера NAND-памяти будут всегда отставать от технологии NAND-памяти.Существует несколько решений, подобных NAND-памяти, которые по­зво­ляют улучшить производительность и функциональные возможности стандартной NAND-памяти.

Например, флэш-память OneNAND является разновидностью NAND-памяти, которая сочетает в одном устройстве RAM и отдельную SLC NAND-память для обеспечения начальной загрузки и увеличения скорости выборки. OneNAND-память требует 1-бит код коррекции ошибок для каждого 512-байт сектора и управление функциями, реализованное либо на чипсете, либо с помощью отдельного контроллера.

Другая разновидность NAND-памяти — OrNAND-память содержит MirrorBit NOR-память с интерфейсом NAND-памяти, что обеспечивает уменьшение времени записи по сравнению с обычной NOR-памятью.

OrNAND-память также требует применения системы коррекции ошибок с длиной кода 1 бит, реализованной на чипсете или на отдельном контроллере для обеспечения надежной загрузки системы.

Кроме того, максимальная емкость OrNAND-памяти в настоящее время ограничена 1 Гбит, что уступает емкости NAND-памяти.

Управляемая NAND-память для хранения данных

Из-за ограниченных возможностей встроенного контроллера NAND-памяти многие системные разработчики используют решения на основе управляемой (managed) NAND-памяти. Некоторые производители предложили продукты на основе управляемой NAND-памяти, которые позволяют снизить сложность обычной подсистемы памяти во встраиваемом приложении.

Варианты управляемой NAND-памяти включают iNAND, GBNAND, moviNAND, Managed NAND и NANDrive. Они используются в основном для хранения данных.

Эти решения позволяют уменьшить сложность системы благодаря эффективному управлению NAND-памятью с помощью встроенного контроллера и файловой системы флэш-памяти (flash file system — FFS), как показано на рисунке 2.

Разработка Fujitsu позволит ускорить работу памяти NOR и снизить ее энергопотребление

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Рис. 2. Система с управляемой NAND-памятью для хранения данных

Эти устройства используют стандартные интерфейсы, например Secure Digital (SD), MultiMediaCard (MMC) или Advanced Technology Attachment (ATA).

Например, iNAND и GBNAND используют интерфейс SD, moviNAND и Managed NAND — интерфейс MMC, а NANDrive — интерфейс ATA.

Эти устройства не поддерживают непосредственное выполнение кода (XIP), поэтому для обеспечения загрузки в таких системах необходима NOR-память.

Использование управляемой NAND-памяти исключает необходимость реализации сложных функций управления памятью на хосте. В результате у производителей чипсетов нет необходимости постоянно следить за изменениями в технологии NAND-памяти.

Гибридные решения на основе управляемой NAND-памяти

Поскольку управляемая NAND-память не обеспечивает возможность загрузки системы, разработчикам приходится использовать для этого более дорогую NOR-память.

Однако в последнее время появились гибридные решения, например флэш-память mDOC H3.

В таких гибридных системах используются RAM и управляемая NAND-память в пределах одного устройства, что упрощает построение системы, как показано на рисунке 3.

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Рис. 3. Система с гибридным устройством памяти, содержащим RAM и управляемую NAND-память

Гибридная память позволяет решить проблему загрузки, связанной с использованием управляемой NAND-памяти.

Она обеспечивает загрузку системы непосредственно из NAND-памяти, исключая необходимость применения более дорогой NOR-памяти, что снижает общие системные затраты.

Гибридная память также позволяет снизить число компонентов в системе и габариты, что имеет важное значение для таких приложений как сотовые телефоны. Эти решения обес­печивают большую емкость памяти, т.к. используют NAND-память.

С другой стороны, гибридная NAND-память имеет большее время загрузки, поскольку необходимо скопировать загрузочный код из NAND-памяти в загрузочную RAM после включения питания.

Кроме того, гибридная NAND-память более сложна, ее трудно интегрировать в систему, а для работы с ней требуется ОС, которая поддерживает выделение страниц по запросу (demand paging) на хосте.

Флэш-память mDOC H3 использует шину NOR-типа для связи с процессором хоста и обеспечивает более быстрое считывание, чем NAND-память, и более быструю запись, чем NOR-память. Из-за большей скорости записи эти устройства подходят для хранения мультимедийных данных.

Использование управляемой NAND-памяти или даже гибридной управляемой NAND-памяти с возможностью загрузки системы не позволяет в значительной степени упростить построение подсистемы памяти.

Разработчики все еще должны учитывать различные типы памяти и интерфейсов разных производителей и другие особенности системы.

Такие типы подсистем памяти часто требуют использования множества компонентов с большим количеством выводов, разработки сложных аппаратных и программных средств. Это увеличивает стоимость системы, площадь печатных плат, время разработки и потребляемую мощность.

Кроме того, увеличивается сложность внешнего контроллера памяти в процессоре хоста. Для современных систем необходимы удобные для пользования полностью управляемые подсистемы памяти для хранения данных и кода со стандартной шиной и RAM, интегрированные в одном устройстве.

Разработчики нуждаются в подсистеме памяти, которая обеспечивает хранение сотен Мбит кода с возможностью непосредственного выполнения (XIP), а также удовлетворяет растущим требованиям по хранению мультимедийных данных.

Такая система должна сочетать преимущества NOR-памяти (быстрое чтение), NAND-памяти (низкая стоимость и большая емкость) и RAM (удобное обращение по шине). Это решение также должно быть простым в использовании и не сложным при проектировании.

Такая система требует минимальной дополнительной разработки аппаратных и программных средств, имеет стандартный интерфейс связи с чипсетом хоста или процессором без использования дополнительной логики и обеспечивает такой же простой и удобный доступ, как к SRAM.

Встроенный контроллер этой подсистемы памяти должен обеспечивать коррекцию ошибок, управление дефектными блоками и выравнивание износа (wear-leveling) NAND-памяти. Контроллер должен иметь возможность также управлять встроенной памятью всех типов (NOR, NAND и RAM) для того, чтобы полностью освободить хост-систему от выполнения этих функций.

Подсистема памяти следующего поколения

В настоящее время на рынке доступны подсистемы памяти, обладающие всеми теми преимуществами, о которых говорилось выше.

Одна из таких систем памяти в одном корпусе, конфигурация которой показана на рисунке 4, состоит из контроллера памяти со встроенной загрузочной NOR-памятью, NAND-памяти и RAM.

Используя кэш RAM перед NAND-памятью, контроллер обеспечивает выделение страниц по запросу и другие функции управления памятью. Кроме того, кэш RAM обеспечивает линейную адресацию подсистемы памяти наподобие SRAM.

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Рис. 4. Пример системы в одном корпусе, состоящей из контроллера памяти со встроенной загрузочной NOR-памятью, NAND-памяти и RAM: а) блок-схема, б) распределение памяти

Читайте также:  Apple отвечает на обвинения Nokia встречным иском

Блок RAM разделен на две части, которые доступны со стороны хоста и могут быть сконфигурированы пользователем: кэш для псевдо NOR-памяти (PNOR) и системная RAM для хоста. Блок NAND-памяти используется для энергонезависимого хранения данных для области PNOR и отображения в памяти ATA NAND-диска.

Конфигурируемый PNOR-блок эмулирует функцию NOR, используя кэш RAM и NAND-память. Поскольку NAND-память используется как основной блок энергонезависимой памяти, это решение обеспечивает хранение достаточно крупного XIP-кода и способно эффективно заменить традиционное решение на базе более дорогой NOR-памяти большой емкости.

С помощью стандартного протокола ATA по стандартной шине RAM (PSRAM или SDR/DDR SDRAM) это решение обеспечивает достаточную емкость для хранения данных в мультимедийных приложениях, использующих интерфейс ATA.

Кроме того, кэш RAM в PNOR-блоке также способствует увеличению ресурса флэш-памяти и надежности хранения кода и данных посредством минимизации циклов чтения/записи NAND-памяти.

Поскольку устройство предлагается в компактном корпусе, такая подсистема управляемой памяти способна упростить построение интерфейса и системы, уменьшает время разработки, снижает общую стоимость решения и улучшает качество и надежность.

К другим преимуществам относятся конфигурируемая пользователем псевдо NOR-память для хранения XIP-кода; надежная система детектирования и коррекции ошибок MLC и SLC NAND-памяти и возможность масштабирования системы для увеличения емкости памяти.

Не требующая серьезных затрат на разработку аппаратных и программных средств, такая подсистема памяти может стать тем долгожданным персонажем из пьесы Беккета.

1. Employ the proper flash memory in your design, Vijay Devadiga//www.embedded.com.

Технологии флэш-памяти

Подобно ОЗУ флэш-память модифицируется электрически внутрисистемно, а подобно ПЗУ она энергонезависима и хранит данные даже после отключения питания. Однако в отличие от ОЗУ информацию во флэш-память нельзя читать и записывать байт за байтом, а необходимо стереть перед тем, как записывать новые данные. Операции над флэш-памятью приведены в табл. 1. В основе работы запоминающей ячейки памяти лежит физический эффект Фаули — Нордхайма (Fowler — Nordheim), связанный с лавинной инжекцией зарядов в полевых транзисторах. Как и в памяти EEPROM, содержимое флэш-памяти программируется электрическим способом, однако основное её преимущество по сравнению с той же памятью EEPROM — высокая скорость доступа и довольно быстрое стирание информации. Таблица 1. Операции над флэш-памятью

Операция Минимальный сегмент Типичное время Максимальное время
Чтение Byte 60 нс 60 нс
Запись Byte 9 мкс не более 0,1 мс
Стирание 8 KB — Block 0,6 с 4,3 с
Примечание По спецификации на ИС SmartVoltage 4 Мbit Boot Block в 8-bit режиме при VCC = 5,0 В и V PP = 5,0 В

В настоящее время можно выделить две основные структуры построения флэш-памяти: память на основе ячеек NOR (логическая функция ИЛИ-НЕ) и ячеек NAND (логическая функция И-НЕ). Структура NOR состоит из параллельно включённых элементарных ячеек хранения информации (рис. 1, а).

а) б)

Рис. 1

Такая организация ячеек обеспечивает произвольный доступ к данным и побайтовую запись информации. В основе структуры NAND лежит принцип последовательного соединения элементарных ячеек, образующих группы (по 16 ячеек в одной группе), которые объединяются в страницы, а страницы в блоки (рис. 1, б).

При таком построении массива памяти обращение к отдельным ячейкам невозможно. Программирование выполняется одновременно только в пределах одной страницы, а при стирании обращение происходит к блокам или к группам блоков.

Ячейка традиционной флэш-памяти представляет собой транзистор с двумя изолированными затворами: управляющим и плавающим. Важная особенность последнего — способность удерживать электроны, т.е. заряд. Кроме того, в ячейке имеются электроды, называемые «сток» и «исток».

При программировании между ними за счет воздействия положительного поля на управляющем затворе создается канал — поток электронов. Электроны, обладающие большей энергией, преодолевают слой изолятора и попадают на плавающий затвор. На нём они могут храниться в течение нескольких лет.

Определенное количество электронов (заряда) на плавающем затворе соответствует логической единице, а любое большее значение — нулю. При чтении эти состояния распознаются путем измерения порогового напряжения транзистора.

Для стирания информации на управляющий затвор подается высокое отрицательное напряжение, и электроны с плавающего затвора переходят (туннелируют) на исток. В технологиях разных производителей этот принцип работы может иметь различия по способу подачи тока и чтения данных из ячейки.

Различия в организации структуры между памятью NOR и NAND находят свое отражение в их характеристиках. При работе со сравнительно большими массивами данных процессы записи/стирания в памяти NAND выполняются значительно быстрее, чем в памяти NOR.

Поскольку 16 прилегающих друг к другу ячеек памяти NAND соединены последовательно без контактных промежутков, достигается высокая плотность размещения ячеек на кристалле, что позволяет получить бьльшую ёмкость при одинаковых технологических нормах.

Последовательная организация ячеек обеспечивает высокую степень масштабируемости, что делает NAND-флэш лидером в гонке наращивания объемов памяти. В основе программирования флэш-памяти NAND лежит процесс туннелирования электронов.

Ввиду того, что туннелирование осуществляется через всю площадь канала ячейки, интенсивность захвата заряда на единицу площади у памяти NAND ниже, чем у других типов флэш-памяти, в результате чего она имеет большее число циклов программирования/стирания.

А поскольку туннелирование используется как для программирования, так и для стирания, энергопотребление микросхемы памяти оказывается низким. Программирование и чтение выполняются посекторно или постранично, блоками по 512 байт, как для эмуляции общераспространённого размера сектора дисковых накопителей.

Технология формирования флэш-памяти компаний Intel, StrataFlash, Wireless Memory System, флэш-память NOR (разработана в 1988 г.

для применения в мобильных телефонах) всего за пять лет обеспечила существенное уменьшение объёма модулей памяти (для мини-ПЭВМ и сотовых телефонов), снижение энергопотребления и стоимости.

В технологии StrataFlash используются как элементы NAND, так и элементы NOR флэш-памяти. Первый модуль памяти StrataFlash состоял из нескольких кристаллов, содержащих как модули ОЗУ, так и непосредственно флэш-память.

С 2005 года компанией Intel освоены модули MLC флэш-памяти NOR, производимые по 90-нм технологии с меньшим энергопотреблением, существенно большей скоростью чтения и записи (достигающей 0,5 Мбайт/с для модуля M18, что позволяет поддерживать трехмегапикселные камеры и воспроизведение видео в формате MPEG4).

Компания Intel первой наладила выпуск многоуровневых микросхем флэш-памяти класса NOR емкостью 1 Гбит для мобильных устройств, используя передовую 65-нм производственную технологию.

Четвертое поколение флэш-памяти Intel с многоуровневыми ячейками (рис. 2 архитектура многоуровневой ячейки) реализует функции маршрутизаторов, коммутаторов и мини-ЭВМ и др., необходимые для самых разных платформ формирования электронных устройств (от цифровых камер и бытовой электроники до сетевых ПК).

Рис. 2

По технологии OneNAND, предложенной компанией Samsung Electronics, в одной микросхеме ячейки флэш-памяти NAND, объединяются высокоскоростной SRAM-буфер и логический интерфейс, причем это единственный тип NAND-памяти, сопрягаемой с флэш-памятью типа NOR.

Гигабитная микросхема OneNAND Flash, производимая по 90-нм технологии, сочетает в себе свойства основных архитектур флэш-памяти — NAND и NOR. От памяти NOR новая структура кристалла унаследовала высокую скорость чтения и записи данных.

Кроме того, OneNAND позволяет хранить и быстро копировать в оперативную память исполняемый код, что характерно для микросхем NAND.

Новый кристалл ОneNAND (размер ячейки памяти, произведённой по 70-нм технологии, составляет всего 0,025 мм2) — это микросхема, отличающаяся высокой скоростью чтения 108 Мбайт/с (в четыре раза выше, чем у обычной NAND-памяти), а также скоростью записи 10 Мбайт/с (в 60 раз превосходит скорость записи у флэш-памяти типа NOR). То есть на 4-Гбит модуле можно хранить 250 снимков, полученных с помощью 5-Мпиксел камеры сотового телефона или более 120 музыкальных файлов.

Эволюция ОneNAND-технологии отвечает закону Мура, т.е. каждые два года число транзисторов в микросхеме удваивается. Фактически же эта технология развивается еще быстрее.

Если несколько лет назад элементы NAND изготавливались на устаревших производственных линиях, то теперь производители перевели этот процесс на самое современное оборудование.

Сейчас их ёмкость удваивается каждый год: например, за 4-Гбит микросхемами NAND (2005 г.) последовали микросхемы емкостью 8 и 16 Гбит (2006 г.).

Технологии Robson (корпорация Intel) способствуют дальнейшему развитию флэш-памяти, сокращают время загрузки системы и программного обеспечения. Флэш-память работает быстрее, чем жёсткий диск, поэтому время её загрузки сокращается. Карта Robson может вмещать от 64 Мбайт до 4 Гбайт памяти, а увеличение её ёмкости ускоряет загрузку данных или приложений.

Технологии MirrorBit, разработанные компанией Spansion (марка FASL LLC), созданы на основе технологий AMD и Fujitsu для разработки и производства флэш-памяти. Существует значительное количество электронной продукции компании Spansion Flash, в том числе устройства на основе современной технологии MirrorBit.

Технология Spansion MirrorBit (рис. 3 архитектура MirrorBit) позволяет хранить два бита данных в одной ячейке памяти, что приводит к удвоению физической плотности памяти.

Рис. 3

В 2005 году на мировом рынке была представлена технология Spansion MirrorBit второго поколения, ориентированная на прогрессивные решения с использованием питающих напряжений всего 1,8 В.

Сегодня она является лучшей среди всех флэш-технологий NOR не только по набору функциональных возможностей, но и по самым высоким показателям плотности упаковки электронных компонентов.

Первенство технологии Mirror Bit обусловлено её фундаментальными преимуществами перед технологией изготовления MLC с плавающим затвором, обеспечивающими увеличенный объём выработки, отличное качество и высокую пропускную способность производственных линий.

Технология, разработанная компаниями Macronix и Qimonda, в отличие от технологии OneNAND компании Samsung позволила запатентовать память типа PRAM (Phase-change Random Access Memory, или память с произвольным доступом на основе фазовых превращений, которая, по словам руководства компании, имеет бьльшие шансы вытеснить флэш-память). Фрагмент такой памяти приведен на рис. Скорость оперирования данными такой памяти превышает этот параметр для чипов флэш-памяти с таким же энергопотреблением почти на три порядка.

Рис. 4

В новой технологии применяется не столь часто используемый сегодня материал — антимонид германия, легированный не называемыми пока примесями. Сообщается, что чипы PRAM-памяти можно будет производить, используя значительно более тонкий техпроцесс: речь идёт о пока что недоступных 22-нм технологиях. Отмечается, что ячейки такой памяти смогут выдерживать до 100 тысяч циклов перезаписи.

  Разработка Fujitsu позволит ускорить работу памяти NOR и снизить ее энергопотребление

Ссылка на основную публикацию
Adblock
detector