3D печать появилась на свет 40 лет назад и открыла потрясающие возможности для создания различных моделей в прототипировании, стоматологии, мелкосерийном производстве, кастомизированных продуктов, миниатюр, скульптур, макетов и многого другого.
Кто же изобрел 3D-принтер? Какая технология 3D-печати была сначала? И что напечатали на 3D-принтере первым делом? Приоткроем завесу тайны над огромным количеством интересных фактов и историй о появлении технологии.
Итак, как все начиналось…
Этап 1: Рождение идеи
Доктор Хидео Кодама, создатель системы быстрого прототипирования (1980 г.)
Доктор муниципального промышленного исследовательского института в Нагоя, Хидео Кодама, подал заявку на регистрацию патента на устройство, которое с помощью УФ-засветки послойно формировало жесткий объект из фотополимерной смолы.
По сути, он описал современный фотополимерный принтер, однако не смог в течение года, как того требовало патентное право, предоставить необходимые данные для регистрации патента и забросил идею. Тем не менее, во многих источниках именно его называют изобретателем технологии 3D-печати.
В 1983 году трое инженеров — Ален Ле Мехо, Оливье де Витт и Жан-Клод Андрэ из французского национального центра научных исследований, в попытке создать то, что они называли «фрактальным объектом», пришли к идее использования лазера и мономера, который под воздействием лазера превращался в полимер. Заявку на патент они подали за 3 недели до американца Чака Хала. Первым объектом, созданным на аппарате, стала винтовая лестница. Технологию инженеры назвали стереолитографией, а патент был одобрен только в 1986 году. Благодаря им самый известный формат файла для 3D-печати и называется STL (от англ. stereolithography). К сожалению, институт не разглядел перспектив в изобретении и его коммерциализации, и патент не был использован для создания конечного продукта.
Чак Халл, создатель лазерной стереолитографии SLA
В тоже самое время Чак Халл работал в компании, которая делала покрытия для столешниц и мебели при помощи ультрафиолетовых ламп. Производство небольших пластмассовых деталей для прототипирования новых конструкций изделий занимало до двух месяцев.
Чаку пришла в голову идея ускорить этот процесс совместив УФ технологию и размещение тонкого пластика послойно. В компании ему выделили небольшую лабораторию для экспериментов, где он работал по вечерам и выходным. В качестве материала Чак использовал затвердевающие под воздействием ультрафиолета фотополимеры на акриловой основе.
Однажды ночью после месяцев экспериментов он смог наконец напечатать образец и был настолько окрылен удачей, что пошел домой пешком. Чак показал свое изобретение жене. Это была чашечка для промывки глаза, больше похожая на чашу для причастия, по мнению жены.
Она и считается официально первой 3D-печатной моделью в мире и по-прежнему хранится в семье Халл, а после их смерти будет передана в Смитсоновский научно-исследовательский институт в Вашингтоне.
Чашечка Халла
Чак Халл подал патентную заявку 8 августа 1984, и 11 марта 1986 года она была одобрена. Изобретение получило название «Аппарат для создания трехмерных объектов с помощью стереолитографии». Чак основал свою компанию — 3D Systems, и в 1988 году выпустил на рынок первый коммерческий 3D-принтер – модель SL1.
Карл Декард и Джо Биман (справа), изобретатели SLS 3D-печати (1987 г.)
Еще один новый способ 3D-печати появился примерно в то же время, что и SLA-печать. Это селективное лазерное спекание SLS, при котором лазер используется для превращения сыпучего порошка (вместо смолы) в твердый материал.
Разработкой занимались Карл Декард, молодой студент бакалавриата в Техасском университете в Остине, и его преподаватель, профессор, доктор Джо Биман. Причем идея принадлежала Карлу. В 1987 году они вместе основали корпорацию Desk Top Manufacturing (DTM) Corp.
Однако пройдет еще не менее 20 лет, пока SLS 3D-печать станет коммерчески доступной потребителю. В 2001 году компанию выкупил Чака Халл, 3D Systems.
Скотт Крамп, разработчик FDM способа 3D-печати (1988 г.)
Удивительно, но более простой и дешевый способ 3D-печати — FDM (Fused Deposition Modelling)был создан после SLA и SLS, в 1988 году. Его автором стал авиационный инженер Скотт Крамп.
Крамп искал простой способ создания игрушечной лягушки для своей дочери и использовал горячий клеевой пистолет: расплавил пластик и разлил его по слоям. Так родилась идея FDM 3D-печати, технологии послойного наплавления пластикой нити.
Крамп запатентовал новую идею и стал соучредителем Stratasys вместе со своей женой Лизой Крамп в 1989 году. В 1992 году они выпустили на рынок свой первый серийный продукт — Stratasys 3D Modeler.
Этап 2: 3D-печать становится доступной
Первые создаваемые 3D Systems и Stratasys агрегаты были громоздкими и дорогостоящими. Стоимость одного составляла сотни тысяч долларов, и использовать их могли только крупнейшие компании автомобильной и аэрокосмической отрасли.
Принтеры имели массу ограничений и не могли широко применяться. Развитие технологии шло очень медленно.
Спустя 20 лет, в 2005 году появился проект RepRap (Replicating Rapid Prototyper) — самовоспроизводящийся механизм для быстрого изготовления прототипов.
Его идейным вдохновителем был доктор Эдриан Бауэр из Университета Бата в Великобритании. Целью проекта было «самокопирование», воспроизведение компонентов самих 3D-принтеров.
На фотографии все пластиковые детали «ребенка» напечатаны на «родителе».
Но фактически группа энтузиастов во главе с Эдрианом смогла наконец создать бюджетный 3D-принтер для домашнего или офисного использования.
Идею быстро подхватили трое техногиков из Нью-Йорка и открыли компанию по производству настольных FDM принтеров — MakerBot. Этот и стало вторым поворотным моментом в современной истории 3D-печати.
Параллельно шли разработки других технологий. Среди них можно выделить биопринтинг. Томас Боланд из Клемсонского Университета запатентовал использование струйной печати для 3D-печати живых клеток, что сделало возможным печать человеческих органов в будущем. Исследования в этой области ведут десятки компаний по всему миру.
Еще одним важным способом применения новой технологи стало создание протезов, сначала обычных, а потом и бионических. В 2008 году первый напечатанный протез был успешно трансплантирован пациенту и позволил ему вернуться к нормальному образу жизни.
Еще одним важным этапом стало появление в сети Интернет файлов печати с открытым исходным кодом. Сайты www.thingiverse.com, www.myminifactory.com и многие другие, содержат как бесплатные, так и платные файлы для 3D-печати. Пользователи делятся моделями в интернете и печатают их самостоятельно.
Этап 3: 3D печать сегодня
В последние годы 3D-печать стала доступна массовому потребителю: цены на принтеры значительно сократились, а их использование стало удобнее. Фотополимерные 3D-принтеры печатают детализированные модели с высокой точностью и разрешением.
Количество пользователей растет в том числе за счет огромного сообщества энтузиастов, готовых прийти на помощь новичкам. Этому способствует и наличие готовых файлов для 3D-печати и доступность программного обеспечение для создания моделей.
3D-печать становится уже стандартным решением в таких отраслях как стоматология, ювелирное дело, ортопедия, в других отраслях внедрение идет полным ходом. Перспективы бесконечны — от строительства домов до нейрохирургии, от печати шоколадом до печати металлом.
Александр Корнвейц,
Эксперт в области аддитивных технологий, основатель и генеральный директор компании «Цветной мир»
Что такое 3d принтер
В 2011 году принтер, который заправили биогелем, напечатал человеческую почку прямо во время конференции TED. Два года назад Adidas анонсировала новую модель кроссовок, которые печатают на 3D-принтере за 20 минут. А недавно компания Илона Маска SpaceX успешно провела испытания двигателей космического корабля, которые тоже напечатали на 3D-принтере.
В современном мире 3D-печать — это не удивительная технология будущего, а хорошо изученная реальность. Ее применяют в архитектуре, строительстве, медицине, дизайне, производстве одежды и обуви и других сферах. По запросу «3D-принтер» поисковики выдают сотни чертежей и прототипов разной сложности — от мыльницы и настольной лампы до автомобильного двигателя и даже жилого дома.
Любой может купить принтер и напечатать чехол для смартфона, но дальше 3д печати по чертежу идут не все. В этой статье расскажем, когда появилась 3D-печать, как можно применять технологию и какие у нее перспективы.
Как появился трехмерный принтер
Не будем слишком утомлять вас датами и кратко перескажем историю 3D-печати.
Предвестник трехмерной печати. В начале 80-х доктор Хидео Кодама разработал систему быстрого прототипирования с помощью фотополимера — жидкого вещества на основе акрила. Технология печати была похожа на современную: принтер печатал объект по модели, послойно.
Первый 3D-принтинг. Изготовление физических предметов с помощью цифровых данных продемонстрировал Чарльз Халл.
В 1984 году, когда компьютеры еще не сильно отличались от калькуляторов, а до выхода Windows-95 было десять лет, он изобрел стереолитографию — предшественницу 3D-печати.
Работала технология так: под воздействием ультрафиолетового лазера материал застывал и превращался в пластиковое изделие. Форму печатали по цифровым объектам, и это стало бумом среди разработчиков — теперь можно было создавать прототипы с меньшими издержками.
Первый 3D-принтер. Источник: habr
Первый производитель 3D-принтеров. Через два года Чарльз Халл запатентовал технологию и открыл компанию по производству принтеров 3D Systems. Она выпустила первый аппарат для промышленной 3D-печати и до сих пор лидирует на рынке. Правда, тогда принтер называли иначе — аппаратом для стереолитографии.
Популярность 3D-печати и новые технологии. В конце 80-х 3D Systems запустила серийное производство стереолитографических принтеров.
Но к тому времени появились и другие технологии печати: лазерное спекание и моделирование методом наплавления. В первом случае лазером обрабатывался порошок, а не жидкость.
А по методу наплавления работает большинство современных 3D-принтеров. Термин «3D-печать» вошел в обиход, появились первые домашние принтеры.
Революция в 3D-печати. В начале нулевых рынок раскололся на два направления: дорогие сложные системы и те, что доступны каждому для печати дома. Технологию начали применять в специфических областях: впервые на 3D-принтере напечатали мочевой пузырь, который успешно имплантировали.
Печать тестового образца почки. Источник: BBC
В 2005 году появился первый цветной 3D-принтер с высоким качеством печати, который создавал комплекты деталей для себя и «коллег».
Как устроен 3D-принтер
В основном принтеры трехмерной печати состоят из одинаковых деталей и по устройству похожи на обычные принтеры. Главное отличие — очевидное: 3D-принтер печатает в трех плоскостях, и кроме ширины и высоты появляется глубина.
Вот из каких деталей состоит 3D-принтер, не считая корпуса:
- экструдер, или печатающая головка — разогревает поверхность, с помощью системы захвата отмеряет точное количество материала и выдавливает полужидкий пластик, который подается в виде нитей;
- рабочий стол (его еще называют рабочей платформой или поверхностью для печати) — на нем принтер формирует детали и выращивает изделия;
- линейный и шаговый двигатели — приводят в движение детали, отвечают за точность и скорость печати;
- фиксаторы — датчики, которые определяют координаты печати и ограничивают подвижные детали. Нужны, чтобы принтер не выходил за пределы рабочего стола, и делают печать более аккуратной;
- рама — соединяет все элементы принтера.
Схема 3D-принтера. Источник: Lostprinters
Все это управляется компьютером.
Как создают изделия
За создание трехмерного изделия отвечает аддитивный процесс 3д-печати — это когда при изготовлении предмета слои материала накладываются друг на друга, снизу вверх, пока не получится копия формы в чертеже. Так печатают изделия из пластика.
А фотополимерная печать работает по технологии стереолитографии (SLA): под воздействием лазерного излучателя фотополимеры затвердевают. Кроме пластика и фотополимерных смол, современные 3D-принтеры работают с металлоглиной и металлическим порошком.
Печать состоит из непрерывных циклов, которые повторяются один за другим — на один слой материала наносится следующий, и печатающая головка двигается, пока на рабочей поверхности не окажется готовый предмет. Отходы печати принтер сам удаляет с рабочего стола.
Как работает 3D-чертеж
Принтер печатает изделие по 3D-чертежу: его создают на компьютере в специальной программе, затем сохраняют в формате STL. Этот файл выводят в программу резки для принтера — она помогает задать модели физические свойства изделия, например плотность. Далее программа преобразует модель в инструкцию для экструдера и выгружает ее на принтер, который начинает печатать изделие.
3D-чертеж легко сделать в домашних условиях — почитайте инструкцию на habr.
Как запрограммировать 3D-принтер
Краткая инструкция по настройке принтера:
- Выбрать 3D-модель. Изделие можно нарисовать самому в специальном CAD-редакторе или найти готовый чертеж — в интернете полно моделей разной сложности.
- Подготовить 3D-модель к печати. Это делают методом слайсинга (slice — часть). К примеру, чтобы распечатать игрушку, ее модель нужно с помощью программ-слайсеров «разбить» на слои и передать их на принтер. Проще говоря, слайсер показывает принтеру, как печатать предмет: по какому контуру двигаться печатной головке, с какой скоростью, какую толщину слоев делать.
- Передать модель принтеру. Из слайсера 3D-чертеж сохраняется в файл под названием G-code. Компьютер загружает файл в принтер и запускает 3д-печать.
- Наблюдать за печатью.
Можно ли применять напечатанные изделия
Зависит от качества материала, принтера и конечного изделия. Часто домашние принтеры неточно передают форму и цвет предмета. Изделия из пластика нужно дополнительно обработать: иногда они печатаются с заусенцами и дефектами и почти всегда с ребристой поверхностью.
Изделие после и до обработки. Источник: 3D-Today
Для обработки поверхности есть несколько способов — не все подходят для домашнего применения:
- механическая обработка — шлифовка вручную, срезание заусенцев;
- химическая — погружение в ацетон, пескоструйная обработка, нанесение спецраствора кисточкой.
Что можно напечатать на 3D-принтере
В интернете полно подборок с инструкциями для печати 3D-изделий. 3D-Today публикует фотографии работ владельцев принтеров, от мелких запчастей до скульптур. На «Хабре» уже три года назад постили список «50 крутых вещей для печати на 3D-принтере». Make3D написали о более масштабных проектах — печати автомобилей, оружия, солнечных батарей и протезов.
Есть ряд перспективных областей, в которых уже применяют 3D-печать.
Изготовление моделей по собственным эскизам.
Константин Иванов, создатель сервиса 3DPrintus, в интервью «Афише» рассказал, что 3D-печать приведет к расцвету customizable things: любой сможет собрать и распечатать нужное изделие онлайн.
Например, сделать модель робота и заказать его печать на промышленном принтере, создать и распечатать свой дизайн обручальных колец или обуви. Примеры таких проектов — Thinker Thing и Jweel.
Прототипы детских протезов, 3D-печать. Источник: 3D-Pulse
Сложная геометрия. 3D-принтер легко справляется с изготовлением моделей любой формы. Несколько примеров:
— в австралийском университете исследовали возможности 3D-принтера и напечатали табурет в форме отпечатка пальца;
— шеф-повар из Дании победил в конкурсе высокой кухни: он напечатал на 3D-принтере миниатюрные блюда сложной формы из морепродуктов и свекольного пюре;
Одно из победивших блюд шеф-повара. Источник: 3D-Pulse
— в немецком институте разработали систему для ускоренной 3D-печати — за 18 минут принтер изготавливает сложное геометрическое изделие высотой в 30 см. Обычно у принтеров уходит час на печать карманных фигурок.
Технологии 3D-печати
Кратко об основных методах 3D-принтинга.
Стереолитография (SLA). В стереолитографическом принтере лазер облучает фотополимеры, и формирует каждый слой по 3D-чертежу. После облучения материал затвердевает. Прочность изделия зависит от типа полимера — термопластика, смол, резины.
Цветную печать стереолитография не поддерживает. Из других недостатков — медленная работа, огромный размер стереолитографических установок, а еще нельзя сочетать несколько материалов в одном цикле.
Эта технология — одна из самых дорогих, но гарантирует точность печати. Принтер наносит слои толщиной 15 микрон — это в несколько раз тоньше человеческого волоса. Поэтому с помощью стереолитографии делают стоматологические протезы и украшения.
Промышленные стереолитографические установки могут печатать огромные изделия, в несколько метров. Поэтому их успешно применяют в производстве самолетов, судов, в оборонной промышленности, медицине и машиностроении.
Селективное лазерное спекание (SLS). Самый распространенный метод спекания порошковых материалов. Другие технологии — прямое лазерное спекание и выборочная лазерная плавка.
Метод изобрел Карл Декарт в конце восьмидесятых: его принтер печатал методом послойного вычерчивания (спекания).
Мощный лазер нагревает небольшие частицы материала и двигается по контурам 3D-чертежа, пока изделие не будет готово. Технологию используют для изготовления не цельных изделий, а деталей.
После спекания детали помещают в печь, где материал выгорает. SLS использует пластик, керамику, металл, полимеры, стекловолокно в виде порошка.
На атлете — кроссовки New Balance, которые изготовили с помощью лазерного спекания. Источник: 3D-Today
Технологию SLS используют для прототипов и сложных геометрических деталей. Для печати в домашних условиях SLS не подходит из-за огромных размеров принтера.
Послойная заливка полимера (FDM), или моделирование методом послойного наплавления. Этот способ 3d-печати изобретен американцем Скоттом Крампом. Работает FDM так: материал выводится в экструдер в виде нити, там он нагревается и подается на рабочий стол микрокаплями. Экструдер перемещается по рабочей поверхности в соответствии с 3D-моделью, материал охлаждается и застывает в изделие.
Преимущества — высокая гибкость изделий и устойчивость к температурам. Для такой печати используют разные виды термопластика.
FDM — самая недорогая среди 3D-технологий печати, поэтому принтеры популярны в домашнем использовании: для изготовления игрушек, сувениров, украшений.
Но в основном моделирование послойным наплавлением используют в прототипировании и промышленном производстве — принтеры довольно быстро печатают мелкосерийные партии изделий. Предметы из огнеупорных пластиков изготовляют для космической отрасли.
Струйная 3D-печать. Один из первых методов трехмерной печати — в 1993 году его изобрели американские студенты, когда усовершенствовали обычный бумажный принтер, и вскоре технологию приобрела та самая компания 3D Systems.
Работает струйная печать так: на тонкий слой материала наносится связующее вещество по контурам чертежа. Печатная головка наносит материал по границам модели, и частицы каждого нового слоя склеиваются между собой.
Этот цикл повторяется, пока изделие не будет готово. Это один из видов порошковой печати: раньше струйные 3D-принтеры печатали на гипсе, сейчас используют пластики, песчаные смеси и металлические порошки.
Чтобы сделать изделие крепче, после печати его могут пропитывать воском или обжигать.
Предметы, которые напечатали по этой технологии, обычно долговечные, но не очень прочные. Поэтому с помощью струйной печати делают сувениры, украшения или прототипы. Такой принтер можно использовать дома.
Эти конфеты сделали на кондитерском струйном 3D-принтере ChefJet: вместо пластика он использует воду, сахар, шоколад и пищевые красители. Источник: 3Dcream.ru
Еще струйную технологию используют в биопечати — наносят живые клетки друг на друга послойно и таким образом строят органические ткани.
Где применяют 3D-печать
В основном в профессиональных сферах.
Строительство. На 3D-принтерах печатают стены из специальной цементной смеси и даже дома в несколько этажей. Например, Андрей Руденко еще в 2014 году напечатал на строительном принтере замок 3 × 5 метров. Такие 3D-принтеры могут построить двухэтажный дом за 20 часов.
Медицина. О печати органов мы уже упоминали, а еще 3D-принтеры активно используют в протезировании и стоматологии. Впечатляющие примеры — с помощью 3D-печати врачам удалось разделить сиамских близнецов, а кошке без четырех лап поставили протезы, которые напечатали на принтере.
Подробнее о 3D-принтинге в медицине можно узнать в статье издания 3D-Pulse.
Космос. С помощью трехмерной печати делают оборудование для ракет, космических станций. Еще технологию используют в космической биопечати и даже в работе луноходов.
Например, российская компания 3D Bioprinting Solutions отправит в космос живые бактерии и клетки, которые вырастят на 3D-принтере.
Создатель Amazon Джефф Безос презентовал прототип лунного модуля с напечатанным двигателем, а космический стартап Relativity Space строит фабрику 3D-печати ракет.
Авиация. 3D-детали печатают не только для космических аппаратов, но и для самолетов. Инженеры из лаборатории ВВС США изготавливают на 3D-принтере авиакомпоненты — например, элемент обшивки фюзеляжа — примерно за пять часов.
Архитектура и промышленный дизайн. На трехмерных принтерах печатают макеты домов, микрорайонов и поселков, включая инфраструктуру: дороги, деревья, магазины, освещение, транспорт. В качестве материала обычно используют недорогой гипсовый композит.
Одно из необычных решений — дизайн бетонных баррикад от американского дизайнера Джо Дюсе. После терактов с грузовыми автомобилями, которые врезались в толпу людей, он предложил макет прочных и функциональных заграждений в виде конструктора, которые можно напечатать на 3D-принтере.
Как 3D-принтеры завоевывают мир: история возникновения и развития устройств объемной печати
Принтеры для печати объемных моделей появились на промышленных предприятиях, в образовательных организациях, стали доступны для домашнего использования, перестав быть эксклюзивным оборудованием. Когда и кем был придуман 3D-принтер, какие технологии объемной печати существуют и где применяются, что ожидает сферу 3D-оборудования в будущем?
Первый 3D-принтер: история создания
В развитии 3D-технологий принимали участие инженеры-изобретатели разных стран. Первопроходцем в мире объемной печати считают Чака Халла — американского разработчика. «Установку для стереолитографии» он начал создавать в 1984 году, а спустя пару лет получил на нее патент. Это позволило перевести проект на коммерческие рельсы: в 1988 году началось серийное производство 3D-принтеров.
Интересно! Халл стал первым, потому что успел запатентовать свое изобретение.
Но еще до него японец Хидео Кодама придумал технологию фотополимерного отверждения моделей и пытался в мае 1980 года получить патент, позднее — в 1984-м — французы Оливье де Витте, Ален ле Мехо и Жан-Клод Андре подавали заявку на свое изобретение аппарата стереолитографии. Но по тем или иным причинам ни первый, ни вторые не смогли запатентовать собственные разработки.
Технология печати заключается в следующем: жидкое светочувствительное вещество — фотополимер — выкладывается тонким слоем и тут же отверждается под воздействием УФ-лучей, превращаясь в пластмассу и обретая заданную форму.
В том же 1988 году, когда на рынок поступили 3D-принтеры Халла, другой американец, Стивен Скотт Крамп, предложил новый способ объемной печати — моделирование методом наплавления. И третья методика, представлявшая собой лазерное спекание фотополимера, но не раствора, а порошка, была представлена Карлом Декардом, инженером из Техасского университета.
Все три аппарата для печати 3D-объектов стали прототипами современных принтеров, предназначенных для создания объемных моделей. Первые агрегаты не отличались высоким качеством и точностью печатных изделий, но это был только первый шаг в прорывной технологии 3D-печати.
Справка. Термин «3D-печать» появился только в 1995 году, а название «3D-принтер» изобретенным агрегатам присвоено в 1996 году.
Эволюция в 3D-печати
Алгоритмы создания объемного объекта постепенно совершенствовались. Появились новые материалы и способы их обработки, повышалась точность печати и улучшалось качество готовых изделий.
Каждый из методов изготовления 3D-моделей обладает своими преимуществами и недостатками.
Для разных сфер производства подходит своя технология, и даже самая ранняя из всех остается актуальной спустя десятки лет после ее первого анонсирования.
LOM
Изготовление объектов методом ламинирования LOM (от англ. laminated object manufacturing) в 1985 году предложил Михаило Фейген. Объемная фигура формируется из тонких слоев пластика, бумаги, ткани, композитных материалов. Нарезку пленок по контуру ведут лазером, затем разогревают материал и соединяют послойно под давлением.
Важно! Стоимость материалов для LOM-печати невысока, это дает возможность максимально снизить себестоимость изделий. Но цена принтеров на порядок больше, чем, например, FDM-аппаратов, поэтому такая техника не востребована для персонального использования.
SLS
Аббревиатура SLS расшифровывается как selective laser sintering — селективное лазерное спекание. Процесс заключается в следующем:
- порошок или гранулы рассыпаются тонким равномерным слоем;
- лазерный луч спекает филамент в областях, заданных цифровой моделью;
- насыпается и выравнивается следующий слой, и цикл повторяется до получения полного объекта.
Важно ! В одной камере принтера одновременно допускается печатать несколько моделей.
В качестве филамента выступают порошковые полимеры, керамические гранулы, нейлон и металлический порошок.
SGC
SGC (solid ground curing) — методика послойного уплотнения, внедренная инженерами компании Cubital (Израиль). Процедура печати заключается в проецировании шаблона на слой фотополимера.
Засвеченный ультрафиолетовыми лучами участок затвердевает, полости заполняются воском, и начиняется формирование следующего слоя. Действия многократно повторяются, и возникает объемная деталь.
По окончании процесса воск выплавляется.
Важно! Стоимость оборудования очень высока, а в качестве филамента применимы дорогостоящие токсичные полимеры.
Технология получила второе название — масочная стереолитография.
FDM
Fused deposition modeling дословно можно перевести как «послойное сплавление». В большинстве современных 3D-принтеров применяется именно эта технология печати термопластичными материалами. Филамент подается в экструдер, расплавляется и выдавливается тонкой нитью на платформу, где слой за слоем вырастает объемная модель.
Справка:
- по технологии FDM печатают детали любой сложности;
- ассортимент термопластов дает возможность выбрать для печати материал нужного цвета и с необходимыми свойствами;
- сформированные объекты допускается обрабатывать — шлифовать, красить, доводить на станках с ЧПУ и вручную.
Демократичная стоимость принтеров и филамента обусловила их применение для домашнего использования.
RepRap
Проект Replicating Rapid Prototyper — сокращенно RepRap — запущен в 2006 году. Его цель — создать принтер, способный воспроизвести самого себя. Первый экземпляр самореплицирующегося аппарата был представлен в 2008 году. Он печатал около половины собственных конструктивных узлов и механизмов.
Схемы, чертежи и пояснительная документация доступны для скачивания в сети Интернет. Благодаря принтерам RepRap и свободному доступу к инструкциям любой желающий может наладить мелкосерийное производство по созданию 3D-моделей с минимальными вложениями на приобретение оборудования. Все затраты заключаются в приобретении пластика.
Первый пищевой принтер
Идею печатать еду воплотили в жизнь ученые Технологического института штата Массачусетс. Амит Зоран и Марчелло Коэльо из Fluid Interfaces Group в 2010 году выпустили 3D-принтер, воссоздающий продукты питания. Аппарат назвали Cornucopia (с англ. «рог изобилия»). Печатающее устройство самостоятельно создает смеси, охлаждает до заданной температуры и создает готовый продукт, представляющей собой блюдо с необходимым вкусом, запахом и текстурой и обладающее требуемой пищевой ценностью.
3D-принтер в медицине
Показавшаяся утопической идея заправить печатающее устройство живыми клетками вместо чернил воплотилась в жизнь — был придуман биопринтер. Вышедшее из стен американского университета Уэйк-Форест оборудование предназначено для воссоздания человеческих органов из стволовых клеток.
Что может напечатать биопринтер:
- кровеносные сосуды;
- кожу;
- кусочки тканей;
- хрящи;
- целые органы — почки, мочевой пузырь, сердце.
Это интересно . Биопринтер используют для ускорения заживления ран. Прибор после сканирования повреждения печатает заполняющие рану ткани прямо на теле пациента.
Перспективы 3D-печати
Печать объемных объектов — технология будущего. Являясь настоящей многофункциональной и при этом компактной фабрикой, 3D-принтер будет использоваться во многих сферах: строительстве, медицине, автомобильной отрасли, электронике, пищевой промышленности, фармацевтике.
- Строительство. Напечатанный дом больше не считается чудом. В Китае, Дубае и странах Европы уже есть архитектурные объекты, напечатанные огромными строительными 3D-принтерами , использующими в качестве филамента строительный раствор.
- Медицина. Главное направление внедрения печатных устройств — получение органов для пересадки. Формирование кровеносных сосудов, кожных покровов с успехом практикуется в среде научных медучреждений.
- Автомобилестроение. Для производства деталей уже сейчас применяется технология 3D-печати. Существуют прототипы, полностью созданные на принтере.
- Пищевая промышленность. Кроме создания кулинарных шедевров, устройства печати будут задействованы для производства блюд с заданными свойствами — диетических, с точно рассчитанной пищевой ценностью. Еду для космических путешественников тоже предлагается печатать.
Это лишь незначительное количество областей применения технологии 3D-печати. Благодаря возможности снизить себестоимость изделий за счет уменьшения производственных затрат оснащаться печатающими устройствами будет все больше предприятий, а в быту они прочно займут место рядом с традиционными струйными и лазерными аппаратами.
Японская компания Ricoh выходит на рынок 3D-принтеров
Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых статьях.
Отписаться от уведомлений вы всегда сможете в профиле автора.
Подписаться
1
Компания Ricoh, ведущий производитель оборудования для создания изображений и электроники, в конце сентября открывает два офиса в префектуре Канагава, один в Йокогаме и еще один в Ацуги.
В них будут продаваться 3D-принтеры мировых лидеров — компаний Stratasys, 3D Systems и других.
Ricoh также будет предлагать услуги по прототипированию с использованием 3D-печати для создания объектов на основе данных, предоставленных клиентом.
Ricoh надеется начать продавать собственные 3D-принтеры в 2016 году. Их ожидаемая стоимость — от 5 до 20 млн йен (от 46 900 до 187 670 долл. США), предназначены они будут для малого и среднего бизнеса.
Ricoh хочет достичь уровня ежегодных продаж 3D-принтеров в 2,8 млн долл., включая собственные продукты. Представители компании рассказали о старте исследований и разработки 3D-печатной технологии, основанной на чернильно-струйной печати и других методах.
Однако Ricoh не единственная японская компания, возлагающая большие надежды на 3D-печать. И Canon, и Epson также планируют начать выпускать 3D-принтеры в ближайшие пять лет.
Компания Canon уже разработала прототип 3D-принтера, а сейчас находится в поиске высокоточной технологии для производства изделий сложных конфигураций.
Подразделение группы компаний Canon, Canon Marketing, стало частью сети торговых представителей компании 3D Systems в Японии и в том числе занимается продажей их профессиональных 3D-принтеров по металлу, работающих по технологии прямого лазерного спекания.
Epson, широкоизвестный бренд, выпускающий энергосберегающие и высокоточные домашние принтеры, работает над созданием промышленных 3D-принтеров, способных печатать из нескольких материалов и предназначенных для коммерческого использования, например, в условиях крупномасштабного производства. Epson планирует выпустить свой первый промышленный принтер в течение следующей пятилетки.
Статья подготовлена для 3DToday.ru
Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых статьях.
Отписаться от уведомлений вы всегда сможете в профиле автора.
Подписаться
1
19.09.2014
69187
5
Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых статьях.
Отписаться от уведомлений вы всегда сможете в профиле автора.
Подписаться
Одним из новейших развитий устройств для 3D-печати стало появление экструдеров. Нет, речь пойдет не…
Ricoh представила свой первый 3D-принтер
Электроника
16 Ноября 2015 18:47 16 Ноя 2015 18:47 |
Компания Ricoh, мировой поставщик печатной техники и решений для документооборота, объявила о выпуске модели AM S5500P — первого 3D-принтера под маркой Ricoh.
Новинка представляет собой инновационное высокоскоростное устройство на базе аддитивной технологии SLS (выборочное лазерное спекание), сообщили CNews в Ricoh.
Эта технология позволяет создавать сложные объекты высокой прочности в результате спекания лазером полимерного порошка.
Модель AM S5500P поддерживает работу с материалами PA6, PA11, PA12 (полиамид, или нейлон) и PP (полипропилен), которые широко применяются в промышленном производстве, включая автомобилестроение. Благодаря большой площади рабочего поля — 550×550×500 мм (ШхГхВ) — принтер способен одновременно создавать несколько разных объектов и быстро формовать большие детали.
Модель Ricoh AM S5500P была разработана при сотрудничестве c Aspect, Inc. Как отмечается, после выхода 3D-принтера на рынок компании планируют продолжить сотрудничество в сфере разработок.
«Появление модели Ricoh AM S5500P можно назвать началом нового этапа в почти 80-летней истории нашей компании и серьезным вкладом в сферу аддитивного производства, — отметил Питер Уильямс, исполнительный директор Ricoh Europe.
— Как компания, предлагающая инновационные решения и оказывающая комплексную поддержку, мы гордимся этим дополнением к нашему портфелю продуктов и услуг и с волнением ожидаем открытия выставки Formnext, где продемонстрируем возможности нашего нового устройства на примере конкретных задач, используя различные материалы».
AM S5500P от Ricoh
В сентябре 2014 г. Ricoh запустила новое бизнес-направление аддитивных технологий (AM Business), основной задачей которого является производство 3D-принтеров.
Ранее компания занималась продажей таких устройств от других производителей, в том числе, предоставляла целый комплекс иных услуг в области аддитивных технологий: от консалтинга и 3D-дизайна до производства.
Теперь, благодаря AM S5500P, Ricoh сможет расширить ассортимент предлагаемых продуктов и услуг в сфере 3D-печати, отметили в компании.
4 проблемы ИТ в филиалах и способы их решения
Интернет
Татьяна Короткова
Подписаться на новости Короткая ссылка