Idf 2005, day zero: nano technologies, platforms, power consumption

Explore and learn from Jetson projects created by us and our community. These have been created for Jetson developer kits. Scroll down to see projects with code, videos and more.

This is a collection of cool projects, applications, and demos that use NVIDIA Jetson platform. For more inspiration, code and instructions, scroll below.

Modify or try out one of these projects provided by NVIDIA and jumpstart your creativity, find tips and tricks in the Community Resources page and find answers in the Jetson forum.

IDF 2005, day zero: nano technologies, platforms, power consumptionIDF 2005, day zero: nano technologies, platforms, power consumptionIDF 2005, day zero: nano technologies, platforms, power consumptionIDF 2005, day zero: nano technologies, platforms, power consumption

Have a Jetson project to share? Post it on our forum for a chance to be featured here too. Every month, we’ll award one Jetson AGX Xavier Developer Kit to a project that’s a cut above the rest for its application, inventiveness and creativity.

Furthermore, you can earn an AI Certification by submitting the Jetson project that you created. Learn more about Jetson AI Certification Programs.

IDF 2005, day zero: nano technologies, platforms, power consumptionIDF 2005, day zero: nano technologies, platforms, power consumptionIDF 2005, day zero: nano technologies, platforms, power consumptionIDF 2005, day zero: nano technologies, platforms, power consumptionIDF 2005, day zero: nano technologies, platforms, power consumptionIDF 2005, day zero: nano technologies, platforms, power consumption

Have a Jetson project to share? Post it on our forum for a chance to be featured here too. Every month, we’ll award one Jetson AGX Xavier Developer Kit to a project that’s a cut above the rest for its application, inventiveness and creativity.

Intel Developer Forum 2005. День нулевой

Вот и наступила весна… А вместе с ней пришла пора очередного Форума Intel для разработчиков (IDF), проводимого дважды в год в солнечной Калифорнии и регулярно гостящего в других городах мира (с недавних пор — и в России). Причем, весна в данном случае пришлась не просто для красного словца — в Сан-Франциско, где IDF в очередной раз проходит с 1 по 3 марта в громадном конференц-центре Moscone West,

IDF 2005, day zero: nano technologies, platforms, power consumption

действительно сейчас тепло, цветут деревья и кусты, обдавая весенними ароматами, а местные жители ходят по улицам в рубашках или легких куртках, если нет дождя.

На этом жизнерадостном фоне прилетев из заснеженной Москвы не так просто было бы просиживать целыми днями в конференц-залах и пресс-румах, толкаться среди нескольких тысяч посетителей и организаторов IDF на шоу-кейсах и в кулуарах.

Если бы не та, порой уникальная и захватывающая информация, которая громадными порциями сваливается на тебя, не оставляя ни минуты покоя.

Даже мне, регулярному посетителю центральных Форумов Intel (а также многих других выставок и конференций сходной тематики), пресытившемуся, казалось бы, подобными мероприятиями и воспринимающими их едва ли не как очередной голливудский блокбастер, добротно слепленный по давно известным клише, нередко приходится удивляться тому потоку новинок, который заготовили для участников IDF его организаторы. Удивляться и даже местами восхищаться…

IDF 2005, day zero: nano technologies, platforms, power consumption

Нашим постоянным читателям, наверное, уже нет нужды объяснять, что такое Intel Developer Forum и «с чем его едят».

Это мероприятие, регулярно в течение многих лет проводимое корпорацией Intel и ее ближайшими друзьями по IT-цеху, имеет свои индивидуальные особенности, отличающие его как от различных компьютерных выставок (вроде CeBIT, Computex, Comdex или CES, где сотни и тысячи производителей IT-продукции хвастаются своими достижениями с целью их повыгоднее продать), так и от крупных мировых научных и технических конференций (вроде Material Research Society Meeting, IEEE и других подобных, где сотни ведущих мировых институтов и исследовательских лабораторий сообщают о новейших научных открытиях, изобретениях и технологиях, внедрением которых предстоит заниматься еще немало лет). На мой взгляд, IDF все же ближе именно к последним, чем к первым. Поскольку Intel, расходующая на Research & Development более 4 миллиардов долларов ежегодно, на IDF как раз старается продемонстрировать не столько текущие и готовые к выпуску на рынок продукты (микропроцессоры, платформы и пр.),

IDF 2005, day zero: nano technologies, platforms, power consumption

сколько сообщить индустрии тот вектор, в котором она будет развиваться в течение ближайших лет.

Обнародовать те нынешние и будущие технологии, внедрением которых корпорация занимается вместе со своими партнерами и другими IT-разработчиками, привлечь на свою сторону новых исследователей и инженеров (то есть «девелоперов», по названию Форума), а возможно, и обсудить целесообразность тех или иных шагов в рамках всего IT-сообщества. И хотя, безусловно, «выставочно-продажная» канва на IDF в некоторой мере тоже присутствует, наиболее ценной и интересной, на мой взгляд, является именно исследовательски-технологическая его часть.

Вот и «нулевой» день нынешнего IDF, прошедший 28 февраля для ведущей прессы и аналитиков со всего мира, преподнес несколько сюрпризов, о чем я и постараюсь рассказать в этом репортаже, предваряющем рассказ о самом Форуме.

Кремниевая нанотехнология: взгляд на 20 лет вперед

В первом докладе нулевого дня речь пошла о том, какими путями может и будет развиваться кремниевая технология производства вычислительных устройств в ближайшие десятилетия.

Кратко и примитивно это можно было бы назвать «оправданием закона Мура на 20 лет вперед», если бы такой банальный на первый взгляд посыл не был подкреплен захватывающими дух деталями научных исследований в области нанотехнологий и их воплощением на практике в технологии промышленного масштаба.

Доклад представил Пауло Джарджини (Paulo Gargini, на фото), директор Intel Technology Strategy и Intel Nanotechnology Research.

IDF 2005, day zero: nano technologies, platforms, power consumption

Более чем часовая презентация проходила в очень быстром темпе, не давая ни на секунду опомниться и спокойно поразмышлять над тем или иным слайдом. Ее подробный пересказ, видимо, был бы полезен для некоторых наших вдумчивых читателей.

Но он занял бы непомерно много места (это около сотни «серьезных» слайдов, к каждому из которых еще нужно добавить немало комментариев).

Поэтому я отмечу лишь отдельные наиболее интересные, на мой взгляд, моменты, тем более что некоторые из присутствовавших в нем деталей я и мои коллеги уже описывали в своих статьях по результатам предыдущих IDF и недавних «технологических прорывов» Intel. Более развернуто я изложу этот материал, возможно, в другой раз.

Последние 40 лет число элементов на кремниевых кристаллах неуклонно продолжало удваиваться каждые два года, а стоимость одного транзистора на кристалле теми же темпами снижалась.

IDF 2005, day zero: nano technologies, platforms, power consumption

Лет 10 назад ученые предрекали большие проблемы при переходе к 100-нанометровым приборам, но, к счастью, этого не случилось, и нынче у лидеров отрасли есть хорошо изученные перспективы развития традиционной кремниевой технологии с планарными КМОП-транзисторами еще лет на 10 вперед (см. слайд).

IDF 2005, day zero: nano technologies, platforms, power consumption

Необходимость в принципиально новых электронных приборах возникнет лишь году к 2013-му, когда возможности миниатюризации нынешних приборов фактически будут исчерпаны.

IDF 2005, day zero: nano technologies, platforms, power consumption

Среди новых кремниевых приборов рассматриваются многозатворные (например, tri-gate) нанотранзисторы, приборы на основе кремниевых нанотрубок, полностью окруженные затвором, а также приборы с квазибаллистическим транспортом.

IDF 2005, day zero: nano technologies, platforms, power consumption

В более отдаленной перспективе рассматриваются также углеродные нанотрубки диаметром в единицы нанометров, которые, в зависимости от строения, могут выступать в качестве металла или полупроводника. Интересными для наноэлектроники являются приборы на базе гетероструктур InSb (с уникально высокой подвижностью), см. слайд.

IDF 2005, day zero: nano technologies, platforms, power consumption

А что же будет после 2020 года, когда КМОП-технология исчерпает возможности миниатюризации, достигнув атомарного предела?

IDF 2005, day zero: nano technologies, platforms, power consumption

Тогда в ход, возможно, пойдет спинтроника — оперирование магнитными моментами элементарных частиц:

Кое-кто поговаривает и о квантовых компьютерах. Пока же КМОП-технология жива и закон Мура будет действовать еще, по крайней мере, лет 15-20.

Кремниевая фотоника: новый прорыв

Другим интересным событием нулевого дня этого IDF стал доклад о первом в мире непрерывном лазере, созданном на кремниевом кристалле в Intel.

Строго говоря, новость об этом обошла мир за несколько дней до IDF (17 февраля вышла соответствующая статья в Nature и пресс-релиз корпорации), но здесь главные разработчики нового прибора прилюдно поделились многими доселе неизвестными деталями и продемонстрировали аудитории многочисленные кристаллы с такими лазерами. Например, на этом фото (фото автора) кристалл содержит сразу 8 таких лазеров.

Читайте также:  CeBIT 2010: Компьютер-клавиатура ASUS Eee Keyboard - выпуск снова отложен, на этот раз до апреля

Не вдаваясь в подробности, отметим, что для того, чтобы создать такой лазер на кремнии, ученым Intel пришлось решить важную проблему — так называемой «двухфотонной абсорбции», которая ранее препятствовала созданию непрерывного лазера на кремнии.

Использование кремния в качестве материала для создания лазера и для многократного усиления ИК-излучения (благодаря гигантскому, примерно в 20000 раз эффекту Рамана),

прежде было проблематично, поскольку рамановское усиление при мощной накачке выходило в насыщение, и получаемой при насыщении мощности не хватало для создания непрерывного лазера.

Дело в том, что энергии одного инфракрасного фотона (кванта света) недостаточно для того, чтобы при соударении с атомом кристаллической решетки кремния выбить из него (освободить) электрон.

Однако если с атомом столкутся сразу два фотона (что нередко происходит при интенсивной накачке лазера внешним излучением), то ионизация атома становится возможной, и свободные электроны в кремнии начинают сами поглощать фотоны, препятствуя тем самым дальнейшему рамановскому усилению.

Проблему удалось решить, создав вдоль оптического канала так называемую p-i-n-структуру (области кремния с дырочной и электронной проводимостью соответственно по бокам нелегированного оптического канала в кремнии, см. рисунок).

  • Подавая электрическое смещение между p- и n-областями кремния, «двухфотонные» свободные электроны можно эффективно удалять из области оптического канала, существенно повышая тем самым рамановское усиление в кремнии и создавая непрерывный лазер.
  • На базе данного решения можно создавать два важных оптических прибора прямо на едином кристалле кремния — усилитель и модулятор сигналов.

А также при помощи каскадов зеркал (расположенных прямо на кремнии) делать многоволновые оптические каналы связи и компактные лазеры для различных применений.

В руках у Mario Paniccia, директора Intel Photonic Technology Lab, кристалл нового непрерывного кремниевого лазера (справа) и традиционный дорогой рамановский оптический усилитель (слева):

Это достижение сотрудников Intel открывает новые горизонты развития кремниевой фотоники и ее дальнейшего внедрения в традиционную микроэлектронику.

Funded Projects – International Iberian Nanotechnology Laboratory – INL –

IDF 2005, day zero: nano technologies, platforms, power consumption

Title: AdIrCAT – Atomically dispersed iridium catalysts for efficient and durable proton exchange membrane water electrolysis

Project Description: The “green hydrogen” produced by water electrolysis using renewable energy as power input will play a vital role in the decarbonization of various sectors, particularly the heavy industry and freight road transport where electrification is impossible or too costly.

Proton exchange membrane water electrolysis (PEMWE) is a very promising low-temperature technology, and has a number of advantages over the conventional alkaline water electrolysis.

However, the usage of precious and scarce noble metal iridium (Ir) to catalyze the thermodynamically and kinetically demanding oxygen evolution reaction (OER) is indispensable to achieve decent electrolysis performance.

To enable widespread deployment of PEM electrolyzers and make electrolyzed hydrogen fuel economically competitive, the utilization of Ir in electrolyzers must be reduced without comprising the catalytic performance for the OER.

The AdIrCAT project aims at developing the emerging atomically dispersed Ir catalysts, which will maximize the utilization of Ir and meanwhile improve the mass activity of Ir catalysts by a factor of at least 5. Moreover, a method will be developed that potentially allows for upscale production of atomically dispersed Ir catalysts.

The catalysts will be accessed not only in the half-cell configuration but also in membrane electrode assemblies under industry-relevant conditions in collaboration with a company where the applicant will have her secondment. The applicant and host group have complementary expertise that can be transferred to each other.

The host institution will offer the applicant a range of training to enhance her competences and skills in terms of proposal preparation, project management, leadership, and science communications. Successful implementation of this project will help the applicant reach her professional maturity and remarkably enhance her future career prospects as a female scientist, leading her to find a tenure-track position after the Fellowship.

Start Date: 2022-02-01
End Date: 2024-01-31
Type: Widening Fellowship
Grant agreement ID: 101023915
Funding Agency: Horizon Europe | European Commission
Funding Programme: Horizon 2020 – Excellence Science – Widening Fellowships
INL Role: Host organisation
Budget Total: € 159,815.04
Budget INL: € 159,815.04

  • IDF 2005, day zero: nano technologies, platforms, power consumption
  • Title: SPINCAT | Spin-polarized Catalysts for Energy-Efficient AEM Water Electrolysis
  • Project Description

For Europe to achieve climate neutrality by 2050, H2 has been identified as one of the priority areas for clean, affordable and secure energy to replace oil and gas, in accordance with the European Green Deal. Water electrolysis using renewable energy is the leading energy storage contender as a clean H2 source to establish a sustainable H2 economy.

However, the necessity of using rare and expensive platinum groups metals (PGMs) to catalyse the cathodic hydrogen evolution reaction (HER) and the anodic oxygen evolution reaction (OER) hinders the wide implementation of water electrolysis. Therefore, the development of efficient PGM-free catalysts is of utmost importance for Europe to reach its decarbonization objectives.

SpinCat addresses this need by realizing a new class of magnetic earth-abundant catalysts that, through spin polarization, will boost catalytic activity towards OER by a factor of three as compared to state-of-the-art catalysts. Further enhancements to catalytic activity will be obtained through the use of external magnetic field during catalysis.

Through an interplay of experiment and theory, we will design and prepare catalyst materials featuring optimal spin polarization effects, gain fundamental knowledge on the parameters affecting the OER activity of magnetic materials, and develop a general theoretical model for the overall description of the influence of the electron spin in electrocatalysis.

The technology will be demonstrated in a magnetically enhanced anion-exchange membrane (AEM) electrolyser prototype, which merges the benefits of both internal and external magnetic effects. The long-term vision of SpinCat is to establish cost-effective H2 production via reducing the cost of membrane-based electrolyser technology by omitting the need of PGMs.

This project will contribute to establishing Europe as the world leader in electrolyser technology for renewable H2 production.

URL: www.spincat.eu

  1. Start Date: 01 June 2021
  2. End Date: 31 May 2025
  3. Type: H2020 | Research and Innovation Action
  4. Grant agreement ID: 964972
  5. Funding Agency: H2020 | European Commission
  6. Funding Programme: FET Open
  7. INL Role: Coordinator (Participant Contact: Yury Kolenko)
  8. Partners:
  9. Budget Total: € 3,358,238.75
  10. Budget INL: € 744,375.00
  • IDF 2005, day zero: nano technologies, platforms, power consumption
  • Title: MAREWIND | MAterials solutions for cost Reduction and Extended service life on WIND off-shore facilities
  • Project Description
  • MAREWIND addresses the main aspects related with materials durability and maintenance in offshore structures which consequently suppose failures, misfunctioning, loss of efficiency in energy generation and which have a major repercussion in O&M costs and capital costs.
  • MAREWIND cover a set of ambitious targets focused on: (1) enhancing corrosion protection systems and durability, (2) effective and durable antifouling solutions without using biocides, (3) erosion protection and mechanical reinforcement in
    wind blades, (4) predictive modelling and monitoring and (5) increasing recyclability.
  • These objectives will be developed considering three main pillars addressing all those aspects related with (a) Scalable manufacturing technologies, (b) Saferby- design materials avoiding environmental concerns and (c) standardisation aspects for effective European deployment of marketable and usable technologies.
  • URL: TBD
  • Start Date: 01 December 2020
  • End Date: 30 November 2024
  • Type: H2020 | Innovation Action
  • Grant agreement ID: 952960
  • Funding Agency: H2020 | European Commission
  • Funding Programme: H2020-LC-NMBP-31-2020 – Materials for off shore energy
  • INL Role: Partner (Participant Contact: Yury Kolenko)
  • Partners:
  • Budget Total: € 6,706,969.63
  • Budget INL: € 354,375.00
  1. IDF 2005, day zero: nano technologies, platforms, power consumption
  2. Title: Inno4Cov-19 | Boosting Innovation for COVID-19 Diagnostic, Prevention and Surveillance
  3. Project Description
Читайте также:  Раскрыта дата выхода Xiaomi Redmi Note 7 с глобальной прошивкой

IDF 2005, day zero: nano technologies, platforms, power consumption

A brief overview of Intel's new platforms, forthcoming technologies for the processor cores and what they offer.

This year, at the Californian IDF press is being given more attention than before. The amount of information is increasing, so it is getting increasingly difficult to keep it in the dark especially in view of its considerable weight both for the science and the regular consumer. We have got nothing to do but get adapted. The heading of this material includes the topics of four reports made at a briefing for the press a day before opening the forum! The amount of acquired information is so great that is difficult to tell in detail and explain the idea of a given technology in simple terms within a single review, but we'll just follow this way. We'll try to avoid complicated technical details and explanations of various physical processes, otherwise we would have to write a whole book which would be interesting to a narrow circle of specialists only.

Far back in 2003, Intel claimed of readiness to the production of chips manufactured following the 90-nm process technology which are now prevailing on the market.

In other words, all is measured just with such values for a long time.

To get a more distinct idea of that, we're bringing in a slide where you can visually see the difference in dimensions and evaluate the physical barrier for technology.

The yellow frame points to the current level of technologies, and even for this year already it can be moved even lower, which was demonstrated on the slide in the text below. Note that it is quite a little left to reach the physical limit of a planar transistor, and already in 2011 it will be possible to come up close to it. That process will be Intel's process codenamed P1270.

It's now high time to ask a simple question — why should we diminish the process technology itself and the transistors? Smaller dimensions give less power consumption, smaller leakage current (less heating), increase the switching (operation) speed of the transistor.

But mere decrease in physical dimensions won't let achieve that. As the dimensions get smaller, typical materials of which transistors are made may change their properties.

For example, the transistor's gate dielectric which works fine at the 65-nm process technology will start passing current on transition to 45 nm. The only way out is to look for a new material.

This slide is already familiar to many. It was demonstrated still two years ago, but it is also topical today. It displays an immense work at looking for new materials for transition to new process technologies. Owing to quite understandable reasons, not all names of the chemical materials can be announced. Therefore, the table shows code names «High-k» and «Metal»

Here is another interesting slide that displays the progress of development.

What to use to interconnect nanotransistors? With nonoconductors. With the conductor diameter 20 nm, it can no longer be created by the «traditional» lithographic technique. But this problem has been solved either. Use of carbon in the manufacture of conductors inside the chip and a special production process allowed attaining 1 nm diameter conductor inside the chip.

It's now high time we summed up a bit. According to Paolo Gargini, today's semiconductor technology will live for no more than 15-20 years. During that time, it will substantially evolve. Currently multi-gate transistors and combination of other technologies (sensor, optical, biological etc.

) on a single chip are being staked on. It is still hard to say what will follow it. As an assumption, the option of transition to molecular technologies is suggested.

However that may be, they promise that Moore's Law will outlive the semiconductor technology, or at least hold for the following 15-20 years.

Since the time of Centrino emergence, Intel started more actively thinking bigger at the scale of platform rather than its specific components. That became especially evident when all started unanimously talking about the convergence of computing systems and communications.

Let's put it straight that currently by the notion of «platform» a well-coordinated (!) operation of several main components of computing systems is implied. In his report, Mr.Spindler introduced the journalists to some new technologies which will be available in the near future.

The most interesting is the Intel Active Management Technology. That is software-hardware structure which will let remotely diagnose systems, restore and control no matter whether the operating system is loaded or not.

This technology will worthily appeal to system administrators and service desks, and in general it will reduce the time of servicing equipment.

The not unknown Vanderpool Technology. looks promising enough.

It allows setting up several virtual systems on a single physical machine each having its own copy of operating system, own launched applications etc. This will essentially improve the system stability and scalability.

By the way, the question of licenses for MS Windows and their required number has again come up. It still remains unsolved. On the whole, the technology is aimed at the server application and will be a complex of hardware and software.

Both the technologies mentioned will be available on the market already this year.

As regards the remaining technologies, we are bringing in a conventional roadmap of what to expect this year.

However hard Mr. Thakkar was trying to tell as much as possible about the new mobile platform, the conversation all the time ended up in energy saving at each part, which in fact was not contrary to the topic of the report.

The platform is already well-known, and we have written about it many times.

Having outlined the four vectors of progress (wireless communication, durable battery operation, performance and compact form factor), we are going deeper into the power consumption.

This is how Intel sees the energy consumption percentage in a modern notebook PC. The most active consumer is the screen, and developers at Intel have also managed to find ways to it. Intel Display Power Savings Technology 2.

0 allows decreasing the screen energy consumption by 15-15%. The solution is hidden in the dynamic control of the backlight brightness.

The video chip is permanently analyzing the image, and depending on its color it is able darkening it completely.

The chipset has also turned more power-saving. It gives saving on the graphic controller and buses, and most interestingly the optimization has reached the audio system as well. It does a better job of handling hibernation stages, and gives an essential saving in the DVD playing mode.

Read next: «IDF 2005, Day One: tuned Chrysler, flight to the stratosphere, and 15 multicore projects».

Читайте также:  Личное мнение. антипиратский закон глазами пирата

Nanotechnology in warfare

Main article: Nanotechnology
Single-walled Carbon Nanotube, consisting of a graphite sheet wrapped into a cylinder shape.

Nanotechnology in warfare is a branch of nano-science in which molecular systems are designed, produced and created to fit a nano-scale (1-100 nm).[1] The application of such technology, specifically in the area of warfare and defence, has paved the way for future research in the context of weaponisation. Nanotechnology unites a variety of scientific fields including material science, chemistry, physics, biology and engineering.[2][3]

Advancements in this area, have led to categorised development of such nano-weapons with classifications varying from; small robotic machines, hyper-reactive explosives, and electromagnetic super-materials.[4] With this technological growth, has emerged implications of associated risks and repercussions, as well as regulation to combat these effects.

These impacts give rise to issues concerning global security, safety of society, and the environment. Legislation may need to be constantly monitored to keep up with the dynamic growth and development of nano-science, due to the potential benefits or dangers of its use.

Anticipation of such impacts through regulation, would 'prevent irreversible damages' of implementing defence related nanotechnology in warfare.[5]

Origins

Historical use of nanotechnology in the area of warfare and defence has been rapid and expansive. Over the past two decades, numerous countries have funded military applications of this technology including; China, United Kingdom, Russia, and most notably the United States.

The US government has been considered a national leader of research and development in this area, however now rivalled by international competition as appreciation of nanotechnology's eminence increases.

[6] Growth of this sphere, therefore has a dominant platform at the forefront of military interests in the use, or misuse of its power.

U.S. National Nanotechnology Initiative

In 2000, the United States government developed a National Nanotechnology Initiative to focus funding towards the development of nano-science and its technology, with a heavy focus on utilising the potential of nano-weapons.

This initial US proposal has now grown to coordinate application of nanotechnology in numerous defence programs, as well as all military factions including Air Force, Army and Navy. From the financial year 2001 through to 2014, the US government contributed around $19.

4 billion to nano-science, moreover the development and manufacturing of nano-weapons for military defence.

[7] The 21st Century Nanotechnology Research and Development Act (2003), envisions the United States continuing its leadership in the field of nanotechnology through national collaboration, productivity and competitiveness, to maintain this dominance.[8]

Developments

Successful transitions of nanotechnology into defence products:[9]

  • Lifetime of material coatings increased from hours to years, however further development continuing (see below).
  • Nano-structured silicate manipulation reducing insulation weight by 980 lbs.
  • High Power Microwave (HPM) devices with reduced weight, shape and power consumption.

The United States government has had military purposed development of nanotechnology at the forefront of its national budget and policy throughout the Clinton and Bush administrations, with the Department of Defense planning to continue with this priority throughout the 21st century.[10] In response to America's assertive public funding of defence purposed nanotechnology, numerous global actors have since created similar programmes.

China

In the sub-category of nano materials China secures second place behind the United States in the amount of research publications they have released.[11] Conjecture stands over the purpose of China's quick development to rival the U.S., with 1/5 of their government budget spent on research (US$337million).

[12] In 2018, Tsinghua University, Beijing, released their findings where they have enhanced carbon nanotubes to now withstand the weight of over 800 tonnes, requiring just 1

c

m

3

{displaystyle cm^{3}}

of material.[13] The scientific nanotechnology team hinted at aerospace, and armour boosting applications, showing promise for defence related nano-weapons.[14] The Chinese Academy of Science's Vice President Chunli Bai, has stated the need to focus on closing the gap between «basic research and application,»[15] in order for China to advance its global competitiveness in nanotechnology.

Between 2001 and 2004, approximately 60 countries globally implemented national nanotechnology programmes. According to R.

D Shelton, an international technology assessor, research and development in this area «has now become a socio-economic target…an area of intense international collaboration and competition.

«[16] As of 2017, data showed 4725 patents published in USPTO by the USA alone, maintaining their position as a leader in nanotechnology for over 20 years.[17]

Current research

Most recent research into military nanotechnological weapons includes production of defensive military apparatus, with objectives of enhancing existing designs of lightweight, flexible and durable materials. These innovative designs are equipped with features to also enhance offensive strategy through sensing devices and manipulation of electromechanical properties.

Soldier battlesuit

The Institute for Soldier Nanotechnologies (ISN), deriving from a partnership between the United States Army and MIT, provided an opportunity to focus funding and research activities purely on developing armour to increase soldier survival.

Each of seven teams produces innovative enhancements for different aspects of a future U.S. soldier bodysuit.

These additional characteristics include energy-absorbing material protecting from blasts or ammunition shocks, engineered sensors to detect chemicals and toxins, as well as built in nano devices to identify personal medical issues such as haemorrhages and fractures.

[18] This suit would be made possible with advanced nano-materials such as carbon nanotubes woven into fibres, allowing strengthened structural capacities and flexibility, however preparation becomes an issue due to inability to use automated manufacturing.[19]

Enhanced materials

Creation of sol-gel ceramic coatings has protected metals from; wear, fractures and moisture, allowing adjustability to numerous shapes and sizes, as well as aiding «materials that cannot withstand high temperature».

[20] Current research focuses on resolving durability issues, where stress cracks between the coating and material set limitations on its use and longevity. The drive for this research is finding more efficient and cost effective uses in application of nanotechnology for Airforce and Navy military groups.

Integration of fibre-reinforced nano-materials in structural features, such as missile casings, can limit overheating, increase reliability, strength and ductility of the materials used for such nanotechnology.[21]

Communication devices

Nanotechnology designed for advanced communication is expected to equip soldiers and vehicles with micro antenna rays, tags for remote identification, acoustic arrays, micro GPS receivers and wireless communication.

[22] Nanotech facilitates easier defence related communications due to lower energy consumption, light weight, efficiency of power, as well as smaller and cheaper to manufacture.

[23] Specific military uses of this technology include aerospace applications such as; solid oxide fuel cells to provide three times the energy, surveillance cameras on microchips, performance monitors, and cameras as light as 18g.[24]

Mini-nukes

The United States, along with countries such as Russia and Germany, are utilising the convenience of small nanotechnologies, adhering it to nuclear «mini-nuke» explosive devices.

[25] This weapon would weigh 5 lbs, with the force of 100 tonnes of TNT,[26][better source needed] giving it the possibility to annihilate and threaten humanity.

The structural integrity would remain the same as nuclear bombs, however manufactured with nano-materials to allow production to a smaller scale.[27]

Ссылка на основную публикацию
Adblock
detector