Железный цех №37. Итоги июня: AMD Polaris, NVIDIA Pascal и Intel Broadwell-E

Тип микроархитектуры процессора играет одну из ключевых ролей в производительности ноутбука или пк, ведь от микроархитектуры зависит быстрота выборки и декодирования поступающих в процессор данных и инструкций, а затем их выполнение и запись в ОЗУ.

Железный цех №37. Итоги июня: AMD Polaris, NVIDIA Pascal и Intel Broadwell-E

На данный момент актуальными и конкурирующими между собой считаются микроархитектуры трех поколений от Intel. Это ядро 4-го поколения Haswell, 5-го поколения Broadwell и новейшая микроархитектура 6-го поколения Skylake.

Как известно, в основе создания данных микроархитектур лежит экстенсивная стратегия под названием «Тик-так». «Тик» означает создание нового поколения процессоров на основе уменьшенного технологического процесса. «Так» же подразумевает выпуск новых микропроцессоров, но без изменения технологии создания.

В статье будет проведен их сравнительный анализ и на его основе будет сделан вывод о наиболее производительном ядре.

Железный цех №37. Итоги июня: AMD Polaris, NVIDIA Pascal и Intel Broadwell-E

Haswell

– микроархитектура, разработанная в 2012 году по 22 нм технологии. Поддерживает сокеты: LGA 1150, BGA 1364, LGA 2011-3. Работает с планкой ОЗУ DDR4. Шина: DMI2.

  • Плюсы процессора с данной микроархитектурой:
  • 1) Энергоэффективный
  • 2) Поддерживает DDR4

3) Низкая стоимость. К примеру, цена на Intel Core I3 4160 с ядром Haswell составляет 7800 рублей.

Минусы:

1) Изготовлен по устаревшей 22 нм технологии, в результате чего проигрывает по многим параметрам его улучшенной версии Broadwell.

Железный цех №37. Итоги июня: AMD Polaris, NVIDIA Pascal и Intel Broadwell-E

Broadwell

– апгрейднутая версия Haswell, разработана для процессоров Intel серии Xeon, а также для седьмого поколения Intel Core I7. Изготовлена по 14 нм технологии. Принадлежит к ветви «тик» маркетинговой миссии «тик-так».

По сравнению с Haswell имеет на 3-5% большую эффективность, чем Haswell, при этом потребляет энергии на 30%, также гораздо меньшее тепловыделение в ПК, 4.5 вт против 15 Haswell.

Все это объясняется, прежде всего, уменьшенным технологическим процессом, по которому было изготовлено ядро, возможностью разгона процессора с данной микроархитектурой, а также наличием 4 кэша Crystalwell, дающего более высокую скорость обмена с ОЗУ, чем всего 3 кэша.

  1. Плюсы ядра:
  2. 1) Эффективное энергопотребление
  3. 2) Возможность разгона
  4. 3) Поддержка DirectX 12
  5. 4) Именно в данной микроархитектуре получил распространение кэш L4, до сего использовавшийся лишь в редком числе микропроцессоров Haswell
  6. 5) Более высокое время автономной работы, чем Haswell
  7. Минусы:
  8. 1) Стоимость (цена варьируется в пределах 13-150000 в зависимости от модели процессора, ибо предназначается данная микроархитектура для камней серии Xeon и Core I7 от Intel в то время как микропроцессор Haswell работает и на бюджетных камнях)

2) Соотношение цены/качества. В тестах микроархитектура показало невысокие результаты, опередив Haswell приблизительно на 3 процента, в том числе и в 3D Mark (Core I7-6850K на Broadwell-E : 19065 очков, Core I7-5820 на Haswell-E– 16598 очков). Если рассматривать это относительно сравнения Ivy Bridge и Haswell, то результат не впечатляющий.

Железный цех №37. Итоги июня: AMD Polaris, NVIDIA Pascal и Intel Broadwell-E

Сравнительный анализ производительности Broadwell и Haswell

Haswell (2.3 ГГц) Broadwell (2.3 ГГц) Разница
Cinebench 11.5 (многопоточный) 2.51 балла 2.584 балла +2.95%
Cinebench 15 (многопоточный) 231 балл 37.6 баллов +2.86%
x264 Benchmark (1 проход) 27.6 к/с 28.421 к/с +2.97%
x264 Benchmark (2 проход) 5.15 к/с 5.243 к/с +1.81%

Железный цех №37. Итоги июня: AMD Polaris, NVIDIA Pascal и Intel Broadwell-E

Skylake

– микроархитектура 6-го поколения, предназначенная, как и Haswell, в основном, для бюджетных энергоэффективных процессоров типа ULV. Разработана она согласно стратегии «тик-так» и затрагивает ветвь «так». То есть, ядро было изготовлено без изменения технологического процесса, но с кардинальным изменением микроархитектуры относительно Broadwell.

Микропроцессор работает на новом высокопроизводительном сокете LGA 1151, поддерживает DDR4, а также, в отличие от LGA 1150 работает с USB 3.0, имеет новую, гораздо более производительную шину DMI3 и большую энергоэффективность по сравнению со своим предшественником.

  • Плюсы:
  • 1) Поддержка нового разъема LGA 1151, более производительного, чем LGA 1150 – сокет Broadwell
  • 2) Поддержка USB 3.0
  • 3) Возможность разогнать GPU на новом сокете
  • 4) Поддержка DDR4 и оптимизация работы с данной планкой ОЗУ
  • 5) Лучшая энергоэффективность относительно Broadwell

6) Одно из главных достоинств — поддержка новой шины DMI 3, дающей в 2 раза большую скорость, чем DMI 2, на котором работают Broadwell и Haswell. Данное преимущество особенно заметно на примере такой программы, как Sony Vegas, где производительность Skylake выше почти в 1.5 раза

  1. 7) Стоимость (для бюджетных моделей Intel Core I3 в среднем цена составляет 3000-7000 рублей)
  2. Минусы:
  3. Относительно Broadwell и Skylake только плюсы, в сравнении же с Kaby Lake 7-го поколения – новейшей микроархитектурой, которой оснащено пока небольшое количество процессоров, дает производительность на несколько процентов ниже.

Подведение итогов:

  • Если взять все показатели, в том числе, стоимость микроархитектур, то рейтинг, составленный автором, будет такой:
  • 1 место: Skylake
  • 2 место: Haswell (данная микроархитектура, как показали тесты, хоть и является более старшей и менее энергоэффективной, но по производительности отстает от Broadwell на 2-3 процента, при этом имеет более низкую стоимость)
  • 3 место: Broadwell

Вывод:

Несмотря на различные маркетинговые ухищрения, которых придерживается корпорация Intel, она все же показывает определенный результат и хоть понемногу, но улучшает с каждым поколением производительность и быстродействие своих процессоров. Так что, кто знает, возможно, к 2030 году, начнет выпускать первые квантовые процессоры, которые будут в миллион раз лучше нынешних, но это уже другая история.

AMD победила Intel в компьютерах, но проиграла в ноутбуках. Почему?

Привет Пикабу! После успеха с Ryzen под десктопы, AMD решила покорить и рынок ноутбуков, однако как обычно что-то пошло не так, и лэптопы на «красных» процессорах так и не стали мегапопулярными. Неужели Ryzen в ноутбуках настолько плохи? И да и нет, давайте в этом разберемся. Как всегда, текстовая версия — под видео.

Обычные пользователи не доверяют компании AMD

Спросите ваших знакомых, далеких от IT, знают ли они компанию Intel. Ответ, скорее всего, будет утвердительным, в отличие от ответа на аналогичный вопрос про AMD. Поэтому когда в 2018 году на рынке стали появляться первые лэптопы на Ryzen, многие пользователи отнеслись к ним с подозрением, и ведь не зря.

Вспомните первый год после релиза процессоров на архитектуре Zen на десктопах.

Проблемы с разгоном CPU, проблемы с периферией, проблемы с разгоном ОЗУ, проблемы с виртуализацией, BSOD и прочие прелести молодой платформы.

А ведь в ноутбуках есть много дополнительных ограничивающих факторов — например, процессоры в них должны быть достаточно энергоэффективными, и добиться этого нужно в том числе и при помощи программной оптимизации.

И, как и в случае с десктопными Ryzen, с мобильными на старте тоже хватало проблем. Вернее, даже не столько с ними, сколько с их интегрированной графикой, AMD Radeon Vega. Невыход из сна? Пожалуйста. Отвратительный fps в половине игр? Конечно. BSOD по каждому чиху, связанному с подключением второго монитора? А куда ж без них.

Конечно, это все можно было поправить обновлением драйверов, но вот незадача — AMD взяла и спихнула их разработку на конечных вендоров, которые производят лэптопы. Разумеется, всякие ASUS и Lenovo от такого расклада слегка удивились и обычно ограничивались лишь одним графическим драйвером на момент выхода ноутбука.

Железный цех №37. Итоги июня: AMD Polaris, NVIDIA Pascal и Intel Broadwell-E

Конечно, это вызвало волну негатива у тех, кто все-таки решил рискнуть и купил лэптопы на первых мобильных Ryzen.

Почти год компания AMD морозилась от этих проблем, и лишь после этого решила взять создание драйверов под мобильные Vega в свои руки.

Но к тому времени первое впечатление о ноутбуках с Ryzen уже было испорчено, и люди в основном предпочитали решения на Intel, которые были гораздо надежнее, пусть и слегка слабее за те же деньги.

И, как итог, когда в начале 2019 года стали появляться лэптопы на Ryzen 3000U, то есть на архитектуре Zen+, пользователи отнеслись к ним более чем прохладно, хотя никаких детских проблем с драйверами или стабильностью больше не было.

Разумеется, чтобы поднять продажи, AMD вместе с вендорами стали устраивать красивые демонстрации и активно снижать цены на лэптопы с Ryzen, дабы вернуть себе доверие пользователей.

Конечно, это больно било по кошельку производителей ноутбуков, которые, вполне возможно, решили больше так не рисковать с AMD, и поэтому мы и видим такое относительно небольшое количество моделей даже на крутых новых 7 нм Ryzen 4000.

Не ждите топовых игровых ноутбуков на Ryzen 4000H

Почти полгода назад компания AMD представила линейку высокопроизводительных процессоров Ryzen 4000H. Они базируются на 7 нм архитектуре Zen 2 и могут иметь до 8 ядер и 16 потоков с частотой выше 4 ГГц, что делает их идеальными решениями для топовых игровых ноутбуков.

Однако куда ни глянь — даже с мощнейшим 8-ядерным Ryzen 9 4900HS в паре встречается в лучшем случае Nvidia RTX 2060, или вообще GTX 1660 Ti. В чем же дело? Почему в десктопах в пару к тому же 8-ядерному Ryzen 7 3800X многие ставят RTX 2080, а вот в ноутбуках нет?

Железный цех №37. Итоги июня: AMD Polaris, NVIDIA Pascal и Intel Broadwell-E

Ответ оказался простым — у Ryzen 4000H, как и у других APU AMD, для подключения видеокарты отведено лишь 8 линий PCI Express, причем не новейшей версии 4.0, а лишь 3.0. И для топовых видеокарт, особенно с учетом того, что они подключаются хитрым образом, чтобы картинку на экран всегда выводила интегрированная в процессор графика Vega, этого не хватает для полноценной работы.

Разумеется, в ноутбуках на Intel таких проблем нет — даже Core i5 10-ого поколения имеют для подключения видеокарт полноценные 16 линий PCIe 3.0, поэтому если вы хотите лэптоп с графикой уровня RTX 2080 или даже 2080 Super — вы будете вынуждены брать ноутбук на CPU из «синего» лагеря.

Нехватка процессоров

Пару лет назад именно с такой проблемой столкнулась Intel — из-за нехватки 14 нм кристаллов цены на и без того не самые дешевые процессоры компании серьезно поднялись, к тому же ей пришлось даже откатиться в плане чипсетов обратно на 22 нм — именно такой техпроцесс используется в среднебюджетном B365.

При этом у Intel собственное производство процессоров, а вот AMD является одной из многих компаний, которые заказывают 7 нм продукцию у TSMC. И с учетом того, что процессоры Ryzen 3000 расхватывают как горячие пирожки, «красные» вполне могли столкнуться с дефицитом кристаллов, ведь не будет же TSMC урезать чужие оплаченные заказы на CPU из-за одной только AMD.

И это отлично объясняет, почему мы видим относительно немного лэптопов на Ryzen 4000 — AMD куда выгоднее удержать высокую долю в десктопном сегменте, где она уже завоевала всенародную любовь. Ну а в ноутбуки процессоры попадают уже по остаточному принципу.

Не ждите мощных ультрабуков на Ryzen

Когда полгода назад компания AMD представляла свои процессоры для ультрабуков и мультимедийных ноутбуков, достаточно большой ажиотаж вызвал 8-ядерный 16-поточный Ryzen 7 4800U. Шутка ли, «красные» смогли в теплопакет всего около пары десятков ватт впихнуть такого монстра с частотой до 4.2 ГГц, да и еще вместе с не самой слабой интегрированной Vega 8.

Поэтому многие пользователи стали с интересном ждать ультрабуки с ним — мало кто откажется получить в легком полуторакилограммовом устройстве мощь на уровне 8-ядерного Ryzen 7 3700X.

И вот на рынке стали появляться решения на 4-ядерном Ryzen 3 4300U, 6-ядерном Ryzen 5 4600U и даже на 8-ядерном Ryzen 7 4700U, но только не на топе.

Читайте также:  Сайт дня: Артметео - самый живописный прогноз погоды

И лишь буквально в последние недели наконец-то появились первые модели на Ryzen 7 4800U, после чего стало понятно, из-за чего мы так долго их не видели.

А причина в том, что физику, увы, не обманешь: посудите сами, в том же Cinebench R15 уже после первого прогона результат этого процессора падает аж на треть, с 1600 до 1200 очков, и удерживается на этом уровне при не самой высокой тактовой частоте около 2.5 ГГц.

Просто для сравнения, 6-ядерный Core i7-10710U со сравнимым теплопакетом набирает лишь слегка меньше, 1100 очков. А ведь он основан на старой архитектуре Skylake с 14 нм техпроцессом, а не новейшей Zen 2 на 7 нм, и имеет на целых 2 ядра меньше.

Все это говорит о том, что у процессоров Intel в ультрабуках более высокая одноядерная производительность, что важно в типичных ежедневных задачах. Железный цех №37. Итоги июня: AMD Polaris, NVIDIA Pascal и Intel Broadwell-E

То есть, как мы видим, Ryzen 7 4800U оказывается достаточно диковинным зверем: ждать от него высокой малоядерной производительности в типичных рабочих задачах точно не приходится, при этом, с другой стороны, часто ли вы гоняете на ноутбуке задачи, которые способны нагрузить все 16 потоков, чтобы сей процессор показал неплохой результат? Ответ, думаю, очевиден, и это отлично объясняет, почему AMD так долго тянула с его выходом на рынок — флагман оказался с подвохом.

Intel может подкупать производителей ПК и ноутбуков

В 2009 году разразился скандал — как оказалось, компания Intel платила крупным производителям и магазинам, чтобы те не создавали и не продавали решения на процессорах AMD.

В итоге на компанию подали в суд, и Intel была вынуждена заплатить более миллиарда долларов штрафа.

И вот теперь, 13 апреля 2020 года, редактор крупного технического ресурса AnandTech Ян Катресс написал интересный твит, который он достаточно быстро удалил:

Железный цех №37. Итоги июня: AMD Polaris, NVIDIA Pascal и Intel Broadwell-E

Иными словами, по словам Яна Intel платит производителям NUC, или компактных ПК на мобильных процессорах, чтобы те не выпускали версии на процессорах AMD или максимально затягивали их выход на рынок. Так ли это на самом деле? Ну, с учетом обострившейся войны между «красными» и «синими» и тем фактом, что Intel когда-то уже занималась подобным, в это можно поверить.

Процессоры Ryzen имеют не самую лучшую энергоэффективность

То, что AMD делает мощные процессоры даже для ноутбуков — это, конечно, здорово. Однако для многих ноутбуки и особенно ультрабуки — это портативные устройства, на которых можно поработать в дороге, и от них требуется в том числе и хорошая автономность и энергоэффективность.

И у ноутбуков с Ryzen с этим затык. Разумеется, сравнивать разные ноутбуки нет смысла, поэтому возьмем Huawei MateBook 13 2020. Он есть в версии как на 4-ядерном Ryzen 5 3500U, так и на 4-ядерном Core i5-10210U.

Оба CPU низковольтные, оба имеют теплопакет около пары десятков ватт.

Разумеется, все остальные комплектующие, такие как экраны, аккумуляторы, накопители, клавиатуры и прочее у них одинаковы, что позволяет сравнить именно энергоэффективность.

Железный цех №37. Итоги июня: AMD Polaris, NVIDIA Pascal и Intel Broadwell-E

И результат получается интересным: если брать обычную ежедневную нагрузку, такую как серфинг в интернете или просмотр фильмов, то версия на Intel оказывается автономнее аж на треть. При этом под высокой нагрузкой CPU AMD позволяет продержаться ноутбуку на 10 минут дольше, однако в любом случае полтора часа мало кого устроят.

Почему так происходит? Да потому что Intel почти 10 лет развивает ультрабучную U-линейку процессоров. В итоге они, например, имеют технологию SpeedShift, которая позволяет всего за миллисекунды управлять частотой CPU. Также у процессоров Intel есть различные C-states, так называемые экономичные состояния, в которых ЦП сильно снижает свою частоту и отключает некоторые блоки.

А вот AMD стала «пилить» ноутбуки на Ryzen всего пару лет, и разумеется опыт предыдущих FX-образных лэптопов тут помогает слабо. Как итог, по энергоэффективности решения «красных» оказываются так себе, а если учесть, что от ультрабука далеко не в последнюю очередь требуют достаточно высокую автономность — очевидно, почему мы видим так немного компактных лэптопов на AMD.

Вывод — усидеть на двух стульях не получится

Хорошо видно, что одновременно делать крутые процессоры и для десктопов, и для ноутбуков слишком сложно, и AMD совершила в итоге много серьезных ошибок в последних — это и лишь 8 линий PCIe для дискретной графики, и проблемы с драйверами для Vega на старте, и невысокая автономность лэптопов с Ryzen.

Все это разумеется сказалось на количестве моделей «красных» ноутбуков в продаже, однако, конечно, это не делает их плохими: все еще лэптопы на Ryzen зачастую оказываются ощутимо дешевле и быстрее конкурентов на Intel, но речи о тотальном доминировании как в случае с десктопами тут и близко не идет.

Мой Компьютер специально для Пикабу

Итоги марта: NVIDIA vs. AMD, переход на Haswell и многое другое

Важным событием марта стала выставка CeBIT 2013, прошедшая в начале месяца в Ганновере. Однако там все стандартно — много нового (и не очень) железа, которое настолько одинаково, что выбрать что-то более или менее оригинальное трудно. Поэтому мы пошли другим путем и перечислили те события и устройства, про которые вряд ли можно сказать «еще одно из тысячи подобных».

NVIDIA vs. AMD

Давнее противостояние двух производителей видеокарт в марте сместилось в сторону бюджетного сектора. Сначала AMD выпустила Radeon HD 7790, заменив ею слегка устаревшую Radeon HD 7850 и противопоставив новинку GeForce GTX 650 Ti. Затем NVIDIA, выждав для приличия несколько дней, представила GTX 650 Ti Boost.

Железный цех №37. Итоги июня: AMD Polaris, NVIDIA Pascal и Intel Broadwell-E

Конечно, неплохо бы самим заполучить обе видеокарты и прогнать их через одинаковый набор тестов, но предварительные выводы мы уже сделали.

GeForce GTX 650 Ti Boost (здесь и далее мы имеем в виду референсные образцы) немного мощнее Radeon HD 7790 и, соответственно, чуть дороже — разница по рекомендованным ценам составляет 20 $ (170 против 150).

Так что при выборе «NVIDIA или AMD» пользователям придется в очередной раз руководствоваться не соотношением цены и производительности, а только личными предпочтениями. Еще можно обратить внимание на GTX 650 Ti и GTX 660, которые после этих анонсов начали понемногу дешеветь.

Переход на Haswell будет неспешным

Железный цех №37. Итоги июня: AMD Polaris, NVIDIA Pascal и Intel Broadwell-E

Мы уже догадывались об этом, но многочисленная информация о процессорах Ivy Bridge и даже Sandy Bridge, которые выйдут уже после анонса Haswell, подтверждает, что переход на новую архитектуру будет плавным. 2 июня нам представят только старшие модели вроде Core i7 и Core i5. Доступных Core i3 и Pentium придется подождать до III квартала, а Celeron — и вовсе до 2014 года.

Кроме того, при тестировании чипов Haswell выявились некоторые проблемы с USB 3.0, так что Intel вполне может сделать первые партии процессоров весьма скромными — на всех не хватит. Но нет худа без добра — под планирующийся ажиотаж можно будет распродать запасы Ivy Bridge. AMD получит очередную фору, но пока не ясно, сможет ли «производитель №2» правильно ею воспользоваться.

Samsung Galaxy S4: новый король гуглофонов

Samsung решила последовать за Apple, лозунгом которой в последнее время можно считать выражение «лучшее — враг хорошего».

Иными словами, компания перестала дергаться и занялась последовательной эволюцией своих гаджетов. Galaxy S4 по дизайну напоминает своего предшественника не меньше, чем iPhone 5iPhone 4S.

У нового аппарата чуть увеличился экран, чуть уменьшились рамки по бокам дисплея и толщина.

Железный цех №37. Итоги июня: AMD Polaris, NVIDIA Pascal и Intel Broadwell-E

О характеристиках смартфона мы уже писали, поэтому постараемся не повторяться. Добавим лишь, что сети LTE (причем не какой-то конкретный диапазон, а все сразу) будет поддерживать как версия с процессором Qualcomm Snapdragon 600, так и версия с Exynos 5 Octa.

Новых революционных функций не появилось. Например, хваленое управление взглядом пока работает не совсем корректно, к тому же активно продвигает его не только Samsung, но и LG. Что касается других способов бесконтактного управления (вроде перелистывания страниц взмахом руки), то об этом можно будет судить лишь после обстоятельного тестирования.

Продажи Samsung Galaxy S4 начнутся сразу в ста пятидесяти пяти странах в конце апреля. В России рекомендованная стоимость новинки составит 29 990 рублей — при том, что себестоимость аппарата без учета затрат на маркетинг и логистику равна 244 $.

Подарок на Рождество: ультрабуки наконец-то подешевеют до 600 $

Железный цех №37. Итоги июня: AMD Polaris, NVIDIA Pascal и Intel Broadwell-E

Одной из причин невысокого спроса на ультрабуки остается высокая цена: до сих пор не так уж много моделей стоят заметно дешевле 1000 $. Intel намерена исправить ситуацию, заодно разграничив тонкие ноутбуки по возможностям: к Рождеству в продажу поступят модели на Core i3 в классическом «книжном» формфакторе стоимостью 600 $. За Core i5 или i7, поворотный или съемный экран и твердотельный накопитель придется выложить уже большую сумму.

Что интересно, Intel объясняет планирующееся снижение цен на ультрабуки отнюдь не своим давлением на партнеров. По мнению корпорации, комплектующие понемногу дешевеют, попутно снижается и себестоимость устройств.

И это даже несмотря на то, что ультрабуки продолжают обрастать новыми возможностями: все аппараты на Haswell будут обязаны иметь сенсорный экран, 4 ГБ оперативной памяти и, вероятно, поддержку беспроводной передачи видеосигнала WiDi, которую Intel тоже собирается активно продвигать.

Что будет с рынком процессоров и видеокарт в 2022 году?

Каждый день все новые западные компании объявляют о бойкоте российского рынка. Среди них оказались McDonald’s, IKEA, OBI, Apple, H&M и многие другие, однако без этой продукции мы все-таки проживем.

А вот приостановка поставок от AMD, Intel, nVidia и TSMC может обернуться глобальными последствиями. Но какими же?

AMD и Intel — монополисты на рынке процессоров

В первую очередь российские пользователи обратили внимание на приостановку поставок от AMD и Intel — им принадлежит подавляющая доля мирового рынка процессоров. Из-за приостановки поставок граждане России больше не смогут собрать компьютер или починить сломанный ноутбук с чипом одного из последних поколений.

Важно отметить, что в первую очередь санкции направлены на промышленный сектор. Процессоры от AMD и Intel используются в суперкомпьютерах «Сбера», МГУ, «Яндекса» и МТС. Комплектующие нуждаются в регулярной замене, поэтому вычислительные мощности отечественных компаний существенно снизятся.

Позитивный момент — прекращение поставок не распространяется на ноутбуки и компьютеры в потребительском сегменте. Производители ПК смогут применять чипы от AMD и Intel в своей продукции для ее последующей реализации в России. А вот запасных о запасных комплектующих нам, похоже что, придется позабыть.

Еще одна монополия, теперь на рынке видеокарт

Ситуация с видеокартами похожа на ту, о которой мы рассказали в предыдущем разделе. Монополия на данном рынке принадлежит nVidia и AMD — теперь желающим собрать компьютер придется отдать целое состояние, подождать несколько месяцев или закупиться за границей. Еще тяжелее придется майнерам криптовалюты.

Пока стоимость видеокарт в Европе снижается на фоне падения курса Ethereum, в России цены улетают в космос, причем не только в рублях, но и в валюте. Несколько недель назад Radeon RX 6900 XT стоила 150.000 рублей, а теперь уже 250 тысяч или 1 680 евро — для сравнения, в Германии ее ценник не превышает 1 400 евро.

Читайте также:  Обзор Alcatel 5: красивейший восьмиядерный безрамочник дешевле, чем Samsung и Xiaomi. В чём подвох?

Бойкот от TSMC — убийство отечественных разработок

Перейдем к самому неожиданному фактору. Если прекращение поставок от AMD, nVidia и Intel российский рынок переживет, то бойкот от TSMC можно сравнить с выстрелом в голову отечественным инновационным разработкам. При этом большая часть соотечественников даже не знает о существовании этой компании.

TSMC — это тайваньская компания, занимающая 90% мирового рынка по производству высокотехнологичных полупроводников. Ее мощностями пользуются Apple, AMD, nVidia, Qualcomm, автомобильные концерны и огромное количество других организаций. Отсюда же процессоры закупают отечественные разработчики.

Иными словами, любая инновационная разработка отечественных компаний будет упираться в невозможность реализации без участия TSMC. Сегодня большая часть процессоров работает с использованием 5-10 нанометровых транзисторов и лишь TSMC может их произвести. 

Стоит отметить, что существующие отечественные процессоры не пострадают от бойкота со стороны TSMC. «Байкал» и «Эльбрус» работают с ТП 28 нанометров, где тайваньская компания занимает лишь 50% рынка. Однако США уже пригрозили санкциями производителям, которые согласятся на поставки чипов в Россию.

Планировалось, что в 2025 году будет создан инженерный образец отечественного процессора «Эльбрус-32С» на 7 нанометров. Теперь о нем, как и о других высокоточных российских разработках, можно позабыть. Даже 16 нм чипы, не увидят свет, так как должны были изготавливаться на заводах TSMC с конца 2022 года.

Последствия санкций для потребителей

Здесь ответ очевиден — техника подорожает не только в рублях, но и в евро. Нам стоит ожидать дефицит процессоров и видеокарт, что вызовет небывалый рост цен из-за повышенного спроса. Аналогичная ситуация коснется ноутбуков, ведь теперь они станут единственным способом получения высокопроизводительного устройства.

Не стоит забывать про кризис полупроводников, из-за которого с 2020 года TSMC не может покрыть мировой спрос на процессоры. От введенного бойкота не пострадают ни AMD, ни Intel, ни nVidia, ни сам тайваньский производитель. Компании попросту направят мощности на увеличение предложения в западных странах.

Удар по российской промышленности

Мы уже вошли в век автоматизации. Электроника используется во всех сферах, поэтому отсутствие процессоров приведет к повышению стоимости продукции и услуг. Сложнее всего придется концерну «АвтоВАЗ», который уже приостановил производство из-за отсутствия иностранных комплектующих, включая чипы.

«Яндексу», «Сберу» и МТС придется свернуть инновационные разработки из-за снижения вычислительных мощностей. Не стоит забывать, что в России онлайн-услуги продвинуты куда сильнее, чем в Европе и США. Любой отечественный банк уже можно отчасти назвать IT-компанией, поэтому на них санкции также серьезно отразятся.

Яркое будущее

Российские компании со временем адаптируются к отсутствию иностранных процессоров, что запустит отечественное производство высокоточных комплектующих. Вполне возможно, через несколько лет мы без проблем будем пользоваться нашими смартфонами и компьютерами.

У России есть высокий технологический потенциал, однако все это время он был заморожен из-за серьезной конкуренции со стороны Запада. Теперь наши ученые и разработчики получат значительное финансирование для создания производительных компонентов. Не стоит сомневаться — у них это точно получится.

Тестируем процессор Intel Broadwell и сравниваем его производительность и нагрев с Haswell. Haswell vs Broadwell

Введение

Мы стремимся уважать информацию личного характера, касающуюся посетителей нашего сайта. В настоящей Политике конфиденциальности разъясняются некоторые из мер, которые мы предпринимаем для защиты Вашей частной жизни.

  • Конфиденциальность информации личного характера
  • «Информация личного характера» обозначает любую информацию, которая может быть использована для идентификации личности, например, фамилия или адрес электронной почты.
  • Использование информации частного характера.
  • Информация личного характера, полученная через наш сайт, используется нами, среди прочего, для целей регистрирования пользователей, для поддержки работы и совершенствования нашего сайта, отслеживания политики и статистики пользования сайтом, а также в целях, разрешенных вами.
  • Раскрытие информации частного характера.

Мы нанимаем другие компании или связаны с компаниями, которые по нашему поручению предоставляют услуги, такие как обработка и доставка информации, размещение информации на данном сайте, доставка содержания и услуг, предоставляемых настоящим сайтом, выполнение статистического анализа.

Чтобы эти компании могли предоставлять эти услуги, мы можем сообщать им информацию личного характера, однако им будет разрешено получать только ту информацию личного характера, которая необходима им для предоставления услуг.

Они обязаны соблюдать конфиденциальность этой информации, и им запрещено использовать ее в иных целях.

  1. Мы можем использовать или раскрывать Ваши личные данные и по иным причинам, в том числе, если мы считаем, что это необходимо в целях выполнения требований закона или решений суда, для защиты наших прав или собственности, защиты личной безопасности пользователей нашего сайта или представителей широкой общественности, в целях расследования или принятия мер в отношении незаконной или предполагаемой незаконной деятельности, в связи с корпоративными сделками, такими как разукрупнение, слияние, консолидация, продажа активов или в маловероятном случае банкротства, или в иных целях в соответствии с Вашим согласием.
  2. Мы не будем продавать, предоставлять на правах аренды или лизинга наши списки пользователей с адресами электронной почты третьим сторонам.
  3. Доступ к информации личного характера.

Если после предоставления информации на данный сайт, Вы решите, что Вы не хотите, чтобы Ваша персональная информация использовалась в каких-либо целях, связавшись с нами по следующему адресу: info@oakbarrel.ru.ru.

Наша практика в отношении информации неличного характера.

Мы можем собирать информацию неличного характера о Вашем посещении сайта, в том числе просматриваемые вами страницы, выбираемые вами ссылки, а также другие действия в связи с Вашим использованием нашего сайта.

Кроме того, мы можем собирать определенную стандартную информацию, которую Ваш браузер направляет на любой посещаемый вами сайт, такую как Ваш IP-адрес, тип браузера и язык, время, проведенное на сайте, и адрес соответствующего веб-сайта.

Использование закладок (cookies).

Файл cookie — это небольшой текстовый файл, размещаемый на Вашем твердом диске нашим сервером. Cookies содержат информацию, которая позже может быть нами прочитана. Никакие данные, собранные нами таким путем, не могут быть использованы для идентификации посетителя сайта.

Не могут cookies использоваться и для запуска программ или для заражения Вашего компьютера вирусами.

Мы используем cookies в целях контроля использования нашего сайта, сбора информации неличного характера о наших пользователях, сохранения Ваших предпочтений и другой информации на Вашем компьютере с тем, чтобы сэкономить Ваше время за счет снятия необходимости многократно вводить одну и ту же информацию, а также в целях отображения Вашего персонализированного содержания в ходе Ваших последующих посещений нашего сайта. Эта информация также используется для статистических исследований, направленных на корректировку содержания в соответствии с предпочтениями пользователей.

Агрегированная информация.

Мы можем объединять в неидентифицируемом формате предоставляемую вами личную информацию и личную информацию, предоставляемую другими пользователями, создавая таким образом агрегированные данные. Мы планируем анализировать данные агрегированного характера в основном в целях отслеживания групповых тенденций.

Мы не увязываем агрегированные данные о пользователях с информацией личного характера, поэтому агрегированные данные не могут использоваться для установления связи с вами или Вашей идентификации. Вместо фактических имен в процессе создания агрегированных данных и анализа мы будем использовать имена пользователей.

В статистических целях и в целях отслеживания групповых тенденций анонимные агрегированные данные могут предоставляться другим компаниям, с которыми мы взаимодействуем.

Изменения, вносимые в настоящее Заявление о конфиденциальности.

Мы сохраняeм за собой право время от времени вносить изменения или дополнения в настоящую Политику конфиденциальности — частично или полностью. Мы призываем Вас периодически перечитывать нашу Политику конфиденциальности с тем, чтобы быть информированными относительно того, как мы защищаем Вашу личную информацию.

С последним вариантом Политики конфиденциальности можно ознакомиться путем нажатия на гипертекстовую ссылку «Политика конфиденциальности», находящуюся в нижней части домашней страницы данного сайта.

Во многих случаях, при внесении изменений в Политику конфиденциальности, мы также изменяем и дату, проставленную в начале текста Политики конфиденциальности, однако других уведомлений об изменениях мы можем вам не направлять.

Однако, если речь идет о существенных изменениях, мы уведомим Вас, либо разместив предварительное заметное объявление о таких изменениях, либо непосредственно направив вам уведомление по электронной почте. Продолжение использования вами данного сайта и выход на него означает Ваше согласие с такими изменениями.

Связь с нами. Если у Вас возникли какие-либо вопросы или предложения по поводу нашего положения о конфиденциальности, пожалуйста, свяжитесь с нами по следующему адресу: info@oakbarrel.ru.

История потоковых мультипроцессоров Nvidia

Последние выходные я потратил на освоение программирования CUDA и SIMT. Это плодотворно проведённое время закончилось почти 700-кратным ускорением моего «рейтрейсера на визитке» [1] — с 101 секунд до 150 мс. Такой приятный опыт стал хорошим предлогом для дальнейшего изучения темы и эволюции архитектуры Nvidia. Благодаря огромному объёму документации, опубликованному за долгие годы «зелёной» командой, мне удалось вернуться назад во времени и вкратце пройтись по удивительной эволюции её потоковых мультипроцессоров. В этой статье мы рассмотрим: Год Поколение Серия Кристалл Техпроцесс Самая мощная карта
===========================================================================
2006 Tesla GeForce 8 G80 90 nm 8800 GTX
2010 Fermi GeForce 400 GF100 40 nm GTX 480
2012 Kepler GeForce 600 GK104 28 nm GTX 680
2014 Maxwell GeForce 900 GM204 28 nm GTX 980 Ti
2016 Pascal GeForce 10 GP102 16 nm GTX 1080 Ti
2018 Turing GeForce 20 TU102 12 nm RTX 2080 Ti

Тупик

Вплоть до 2006 года архитектура GPU компании NVidia коррелировала с логическими этапами API рендеринга[2].

GeForce 7900 GTX, управлявшаяся кристаллом G71, состояла из трёх частей, занимавшихся обработкой вершин (8 блоков), генерацией фрагментов (24 блоков), и объединением фрагментов (16 блоков). Кристалл G71. Обратите внимание на оптимизацию Z-Cull, отбрасывающую фрагмент, не прошедший бы Z-тест. Эта корреляция заставила проектировщиков угадывать расположение «узких места» конвейера для правильной балансировки каждого из слоёв. С появлением в DirectX 10 ещё одного этапа — геометрического шейдера, инженеры Nvidia столкнулись со сложной задачей балансировки кристалла без знания того, насколько активно будет использоваться этот этап. Настало время для перемен.

Tesla

Nvidia решила проблему роста сложности при помощи «объединённой» архитектуры Tesla, выпущенной в 2006 году. В кристалле G80 больше не было различий между слоями. Благодаря возможности выполнения вершинного, фрагментного и геометрического «ядра», потоковый мультипроцессор (Stream Multiprocessor, SM) заменил все существовавшие ранее блоки. Уравновешивание нагрузки выполнялось автоматически, благодаря замене выполняемого каждым SM «ядра» в зависимости от требований конвейера. «Фактически, мы выбросили всю шейдерную архитектуру NV30/NV40 и с нуля создали новую, с новой общей архитектурой универсальных процессоров (SIMT), в которой также были введены новые методологии проектирования процессоров».

Джона Албен (интервью extremetech.com)

Больше не имеющие возможности выполнять инструкции SIMD «блоки шейдеров» превратились в «ядра», способные выполнять по одной целочисленной инструкции или по одной инструкции с float32 за такт. SM получает потоки в группах по 32 потока, называемых warp. В идеале все потоки одного warp выполняют одновременно одну и ту же инструкцию, только для разных данных (отсюда и название SIMT). Многопотоковый блок инструкций (Multi-threaded Instruction Unit, MT) занимается включением/отключением потоков в warp-е в случае, если их указатель инструкций (Instruction Pointer, IP) сходится/отклоняется. Два блока SFU помогают выполнять сложные математические вычисления, например, обратный квадратный корень, sin, cos, exp и rcp. Эти блоки также способны выполнять по одной инструкции за такт, но поскольку их только два, скорость выполнения warp-а делится на четыре. Аппаратная поддержка float64 отсутствует, вычисления выполняются программно, что сильно влияет на скорость выполнения. SM реализует свой максимальный потенциал, когда способен скрывать задержки памяти благодаря постоянному наличию диспетчеризируемых warp-ов, но также когда поток в warp-е не отклоняется (управляющая логика удерживает его на одном пути выполнения инструкций). Состояния потоков хранятся в 4-килобайтных файлах регистров (Register File, RF). Потоки, занимающие слишком большое пространство в стеке, снижают количество возможных потоков, которые могут выполняться одновременно, понижая при этом производительность.

Читайте также:  С двумя sim-картами, но без тв-тюнера. жесткий взгляд на iphone xs, xs max и xr

Кристаллом-флагманом поколения Tesla был 90-нанометровый G80, представленный в GeForce 8800 GTX. Два SM объединены в кластер обработки текстур (Texture Processor Cluster, TPC) вместе с текстурным блоком (Texture Unit) и кешем Tex L1.

Обещалось, что G80 с 8 TPC и 128 ядрами генерирует 345,6 гигафлопс[3]. Карта 8800 GTX была в своё время чрезвычайно популярна, она получила замечательные отзывы и полюбилась тем, кто мог себе её позволить.

Она оказалась таким превосходным продуктом, что спустя тринадцать месяцев после выпуска оставалась одним из самых быстрых GPU на рынке.

G80, установленный в 8800 GTX. Render Output Units (ROP) занимаются выполнением сглаживания. Вместе с Tesla компания Nvidia представила язык программирования C для Compute Unified Device Architecture (CUDA) — надмножество языка C99. Это понравилось энтузиастам GPGPU, приветствовавшим альтернативу обмана GPU при помощи текстур и шейдеров GLSL. Хотя в этом разделе я в основном рассказываю о SM, это была только одна половина системы. В SM необходимо передавать инструкции и данные, хранящиеся в памяти GPU. Чтобы избежать простоев, GPU не пытаются минимизировать переходы в память при помощи больших кешей и прогнозирования, как это делают CPU. GPU пользуются задержкой, насыщая шину памяти для удовлетворения потребностей ввода-вывода тысяч потоков. Для этого кристалл (например, G80) реализует высокую пропускную способность памяти при помощи шести двусторонних шин памяти DRAM. GPU пользуются задержками памяти, в то время как CPU скрывают их при помощи огромного кеша и логике прогнозирования.

Fermi

Tesla была рискованным ходом, оказавшимся очень успешным. Она была настолько успешной, что стала фундаментом для GPU компании NVidia на следующие два десятка лет. «Хотя с тех пор мы, конечно же, внесли серьёзные архитектурные изменения (Fermi была серьёзным изменением архитектуры системы, а Maxwell стал ещё одним крупным изменением в проектировании процессоров), фундаментальная архитектура, представленная нами в G80, и сегодня осталась такой же [Pascal]».

Джона Албен (интервью extremetech.com)

В 2010 году Nvidia выпустила GF100, основанный на совершенно новой архитектуре Fermi. Внутренности её последнего чипа подробно описаны в технической документации Fermi[4]. Модель выполнения по-прежнему основана на warp-ах из 32 потоков, диспетчеризируемых в SM. NVidia удалось удвоить/учетверить все показатели только благодаря 40-нанометровому техпроцессу. Благодаря двум массивам из 16 ядер CUDA, SM теперь мог одновременно диспетчеризировать два полу-warp-а (по 16 потоков). При том, что каждое ядро выполняло по одной инструкции за такт, SM по сути был способен исключать по одной инструкции warp за такт (в четыре раза больше, чем у SM архитектуры Tesla). Количество SFU также увеличилось, однако не так сильно — мощность всего лишь удвоилась. Можно прийти к выводу, что инструкции такого типа использовались не очень активно. Присутствует полуаппаратная поддержка float64, при которой комбинируются операции, выполняемые двумя ядрами CUDA. Благодаря 32-битном АЛУ (в Tesla оно было 24-битным) GF100 может выполнять целочисленное умножение за один такт, а из-за перехода от IEEE 754-1985 к IEEE 754-2008 имеет повышенную точность при работе с конвейером float32 при помощи Fused Multiply-Add (FMA) (более точного, чем используемое в Tesla MAD). С точки зрения программирования, объединённая система памяти Fermi позволила дополнить CUDA C такими возможностями C++, как объект, виртуальные методы и исключения.

Благодаря тому, что текстурные блоки стали теперь SM, от концепции TPC отказались. Она была заменена кластерами Graphics Processor Clusters (GPC), имеющими по четыре SM.

И последнее — SM теперь одарён Polymorph Engine, занимающимся получением вершин, преобразованием окна обзора и тесселяцией.

Карта-флагман GeForce GTX 480 на основе GF100 рекламировалась, как содержащая 512 ядер и способная обеспечить 1 345 гигафлопс[5].

GF100, установленный в GeForce GTX 480. Обратите внимание на шесть контроллеров памяти, обслуживающих GPC.

Kepler

В 2012 году Nvidia выпустила архитектуру Kepler, названную в честь астролога, наиболее известного открытием законов движения планет. Как обычно, взглянуть внутрь нам позволила техническая документация GK104[6]. В Kepler компания Nvidia значительно улучшила энергоэффективность кристалла, снизив тактовую частоту и объединив частоту ядер с частотой карты (ранее их частота различалась вдвое). Такие изменения должны были привести к снижению производительности. Однако благодаря вдвое уменьшившемуся техпроцессу (28 нанометров) и замене аппаратного диспетчера на программный, Nvidia смогла не только разместить на чипе больше SM, но и улучшить их конструкцию. Next Generation Streaming Multiprocessor (SMX) — это монстр, почти все показатели которого были удвоены или утроены. Благодаря четырём диспетчерам warp-ов, способным на обработку целого warp-а за один такт (Fermi мог обрабатывать только половину warp-а), SMX теперь содержал 196 ядер. Каждый диспетчер имел двойную диспетчеризацию, позволявшую выполнять вторую инструкцию в warp-е, если она была независима от текущей исполняемой инструкции. Двойная диспетчеризация была не всегда возможна, потому что один столбец из 32 ядер был общим для двух операций диспетчеризации. Такая схема усложнила логику диспетчеризации (к этому мы ещё вернёмся), но благодаря выполнению до шести инструкций warp-ов за такт SMX обеспечивал удвоенную производительность по сравнению с SM архитектуры Fermi.

Заявлялось, что флагманская NVIDIA GeForce GTX 680 с кристаллом GK104 и восемью SMX имеет 1536 ядер, достигающими 3 250 гигафлопс[7]. Элементы кристалла стали настолько запутанными, что мне пришлось убрать со схемы все подписи.

GK104, установленный в GeForce GTX 680. Обратите внимание на полностью переделанные подсистемы памяти, работающие с захватывающей дух частотой 6 ГГц. Они позволили снизить количество контроллеров памяти с шести до четырёх.

Maxwell

В 2014 году Nvidia выпустила GPU десятого поколения под названием Maxwell. Как говорится в технической документации GM107[8], девизом первого поколения архитектуры стали «Максимальная энергоэффективность и чрезвычайная производительность на каждый потреблённый ватт».

Карты позиционировались для «ограниченных в мощности сред, таких как ноутбуки и PC с малым форм-фактором (small form factor, SFF)». Важнейшим решением стал отказ от структуры Kepler с количеством ядер CUDA в SM, не являющимся степенью двойки: некоторые ядра стали общими и вернулись в работе в режиме половины warp-ов.

Впервые за всю историю архитектуры SMM имел меньше ядер, чем его предшественник: «всего» 128 ядер. Согласование количества ядер и размера warp-ов улучшило сегментацию кристалла, что привело к экономии площади и энергии. Один SMM 2014 года имел столько же ядер (128), сколько вся карта GTX 8800 в 2006 году.

Второе поколение Maxwell (описанное в технической документации GM200[9]) значительно повысило производительность, сохранив при этом энергоэффективность первого поколения.

Техпроцесс оставался на уровне 28 нанометров, поэтому инженеры Nvidia не могли для повышения производительности прибегнуть к простой миниатюризации. Однако уменьшение количества ядер SMM снизило их размер, благодаря чему на кристалле удалось разместить больше SMM. По сравнению с Kepler, второе поколение Maxwell удвоило количество SMM, при этом всего на 25% увеличив площадь кристалла. В списке усовершенствований также можно найти упрощённую логику диспетчеризации, позволившую снизить количество избыточных повторных вычислений диспетчеризации и задержку вычислений, что обеспечило повышение оптимальности использования warp-ов. Также на 15% была увеличена частота памяти.

Изучение структурной схемы Maxwell GM200 уже начинает напрягать глаза. Но мы всё равно внимательно его исследуем. Флагманская карта NVIDIA GeForce GTX 980 Ti с кристаллом GM200 и 24 SMM обещала 3072 ядер и 6 060 гигафлопс[10].

GM200, установленный в GeForce GTX 980 Ti.

Pascal

В 2016 году Nvidia представила Pascal. Техническая документация GP104[11] оставляет ощущение дежавю, потому что Pascal SM выглядит точно так же, как Maxwell SMM. Отсутствие изменений SM не привело к стагнации производительности, потому что 16-нанометровый техпроцесс позволил разместить больше SM и снова удвоить количество гигафлопс.

Среди других серьёзных улучшений была система памяти, основанная на совершенно новой GDDR5X. 256-битный интерфейс памяти благодаря восьми контроллерам памяти обеспечивал скорости передачи в 10 гигафлопс, увеличив на 43% пропускную способность памяти и снизив время простоя warp-ов.

Флагман NVIDIA GeForce GTX 1080 Ti с кристаллом GP102 и 28 TSM обещал 3584 ядер и 11 340 гигафлопс[12].

GP104, установленный в GeForce GTX 1080.

Turing

Выпуском в 2018 году Turing компания Nvidia произвела свой «крупнейший за десять лет архитектурный шаг вперёд»[13]. В «Turing SM» появились не только специализированные ядра Tensor с искусственным интеллектом, но и ядра для трассировки лучей (rautracing, RT).

Такая фрагментированная структура напоминает мне многослойную архитектуру, существовавшую до Tesla, и это ещё раз доказывает, что история любит повторения. Кроме новых ядер, в Turing появилось три важные особенности.

Во-первых, ядро CUDA теперь стало суперскалярным, что позволяет параллельно выполнять инструкции с целыми числами и с числами с плавающей запятой. Если вы застали 1996 год, то это может напомнить вам об «инновационной» архитектуре Pentium компании Intel.

Во-вторых, новая подсистема памяти на GDDR6X, поддерживаемая 16 контроллерами, способна теперь обеспечивать 14 гигафлопс. В-третьих, потоки теперь не имеют общих указателей инструкций (IP) в warp-е. Благодаря появившейся в Volta диспетчеризации Independent Thread Scheduling, каждый поток имеет собственный IP.

В результате этого SM способны гибче настраивать диспетчеризацию потоков в warp-е без необходимости как можно более быстрого их схождения.

Флагманская карта NVIDIA GeForce GTX 2080 Ti с кристаллом TU102 и 68 TSM имеет 4352 и достигает 13 45 гигафлопс[14]. Я не стал рисовать структурную схему, потому что она выглядела бы как размытое зелёное пятно.

Что ждёт нас дальше

По слухам, следующая архитектура под кодовым названием Ampere будет объявлена в 2020 году.

Так как Intel доказала на примере Ice Lake, что по-прежнему существует потенциал миниатюризации при помощи 7-нанометрового техпроцесса, почти нет сомнения в том, что Nvidia использует его для дальнейшего уменьшения SM и удвоения производительности.

Терафлопс/с для каждого кристалла/карты Nvidia (источник данных: techpowerup.com). Интересно будет посмотреть, как Nvidia продолжит эволюцию идеи кристаллов, имеющих три типа ядер, выполняющих разные задачи. Увидим ли мы кристаллы, целиком состояние из Tensor-ядер или RT-ядер? Любопытно.

Справочные материалы

[ 1] Источник: Revisiting the Business Card Raytracer [ 2] Источник: Fermi: The First Complete GPU Computing Architecture [ 3] Источник: NVIDIA GeForce 8800 GTX (techpowerup.com) [ 4] Источник: Fermi (GF100) whitepaper [ 5] Источник: NVIDIA GeForce GTX 480 [ 6] Источник: Kepler (GK104) whitepaper [ 7] Источник: NVIDIA GeForce GTX 680 [ 8] Источник: Maxwell Gen1 (GM107) whitepaper [ 9] Источник: Maxwell Gen2 (GM200) whitepaper [10] Источник: NVIDIA GeForce GTX 980 Ti [11] Источник: Pascal (GP102) whitepaper [12] Источник: NVIDIA GeForce GTX 1080 Ti [13] Источник: Turing (TU102) whitepaper [14] Источник: NVIDIA GeForce GTX 2080 Ti

Ссылка на основную публикацию
Adblock
detector