Первый 32 нм мобильный чип Intel Celeron появится весной 2010 года

Всем привет, уважаемые гости блога! Сегодня будут рассмотрены поколения процессоров intel — таблица по годам, дата выхода каждого, а также как узнать какого поколения процессор в компьютере. Речь пойдет о Core I7. Pentium и I5 – темы для отдельных постов.

Краткая характеристика серии

Первый 32 нм мобильный чип Intel Celeron появится весной 2010 года

Условно эти чипы можно разделить на стоковые и продвинутые. Последние имеют собственную «экосистему» из соответствующих системных плат, чипсетов и сокетов. Они относятся к так называемой серии Х. Также в маркировке используются следующие обозначения:

  • K – разблокированный множитель и поддержка разгона;
  • S – сниженное энергопотребление;
  • T – очень сниженное;
  • E – ЦП для встраиваемых систем;
  • C и R – чипы с графикой Iris.

Рассмотрим историю и особенности всех поколений этой модели

1 поколение

Первая серия этой модели поступила в продажу в 2008 году. Еще до появления i3 и i5 эта линейка перешла на новый нейминг. Чипы с модельными номерами 920, 930, 940, 950, 960, 965, 975 создавались по техпроцессу 45 нм. У всех CPU было по 4 ядра, которые работали в восемь потоков.

Под эти чипы разработана новая платформа с 1336-контактным разъемом и модулями памяти ДДР3.

После появления в 2009 году более удобного сокета 1156, выпущена серия с номерами 860, 860, S 870, 875К и 880. Характеристики не отличались от предшественников, однако сборка стоила дешевле из-за более дешевых материнок с таким сокетом.

Первый 32 нм мобильный чип Intel Celeron появится весной 2010 года

2 поколение

Архитектуру изменили на Snady Bridge и окончательно перешли на 32 нм техпроцесс. В базовой серии были выпущены процессоры 2600, 2600S, 2600K, 2700K – четырехъядерные, восьми потоковые, работали с одноканальной памятью и монтировались в новые 1155 сокеты.

Логичным продолжением стала модель под платформу 2011, которая сменила устаревшую 1366. Это ЦП с кодами 3820, 3930К, 3960Х, 3970Х. У младшей модели было 4 ядра, у старших 6. Новинкой стал четырехканальный контроллер для памяти DDR III.

3 поколение

Первый 32 нм мобильный чип Intel Celeron появится весной 2010 года

Впервые применена интегрированная видеокарта. Чипы можно было монтировать на сокет 1155.

4 поколение

В рамках серии Х, выпущены модификации с кодовыми номерами 4820К, 4930К и 4960Х. Устанавливались в сокет 2001 и поддерживали 4 канала ДДР3.

Созданное большое число модификаций на архитектуре Haswell – 4765Т, 4770, 4770К, 4770S, 4770Т, 4770ТЕ, 4771, 4785Т, 4790, 4790Т, 4790S, 4790K. Монтировались на платы с новым сокетом 1150 и имели встроенный графический чип HD 4600.

5 поколение

Техпроцесс остался прежним – 22 нм. В рамках серии Х выпущены 5820К, 5930К и 5960Х. Контроллер перевели на память ДДР4, поэтому использовалась платформа 2011 третьей версии. Также советую почитать про разные поколения народного и популярного intel core i5.

Массового производства процессоров этой серии не было. Производитель осваивал 14 нм техпроцесс на архитектуре Broadwell. Создано всего две модели: 5775С и 5775R – один и тот же чип с графическим ускорителем Iris Pro 6200.

В серии Х созданы модели 6800К, 6850К, 6900К и 6950Х. Они работали с четырехканальной памятью ДДР 4 и ставились в слот 2011 третьей версии.

6 поколение

Первый 32 нм мобильный чип Intel Celeron появится весной 2010 года

7 поколение

Использована модернизированная архитектура Kaby Lake, которая выпускалась по техпроцессу 14 нм. Выпущены модели 7700, 7700Т и 7700К. Совместимы с платами 1151. В Х-серии выпущен всего один чип – 7740Х, четырехъядерник для платформы 2066.

8 поколение

Чипы восьмого поколения, на основе архитектуры Coffee Lake, появились в 2017 году. В модельный ряд включены 8700, 8700К и 8700Т, которые имели по 6 ядер. Сокет обновлен до 1151 второй версии, поддержку ДДР3 убрали. Ограниченным тиражом выпущен 8086К, приуроченный к 40-летию ЦП Intel 8086.

9 поколение

Первый 32 нм мобильный чип Intel Celeron появится весной 2010 года

10 поколение

Серия, также известная как Comet Lake-S, представлена в 2020 году. В этих процессорах используется сокет LGA1200, который пришел на смену 1151-2 v2. В общей сложности планируется выпустить более трех десятков моделей ЦП этого поколения(речь идет не только о десктопных вариантах).

При их производстве использован улучшенный 14-нм тех. процесс, но от предшественников, Skylake-S, эти CPU в плане архитектуры почти не отличаются. Графический блок UHD Graphics и вовсе остался без изменений. Главное отличие от предшественников — более совершенные механизмы динамического разгона ядер.

При покупке нового процессора можно определить, к какому поколению он относится, по этому описанию. Больше никаких моделей не выпускалось, поэтому несложно свериться.

11 поколение Core I7

Эти процессоры создаются на архитектуре Cypress Cove. Разработака не новая — по сути, это оптимизированная Sunny Cove, на которой выпускаются мобильные процессоры Ice Lake. Планировалось, что будет использован 10 нм техпроцесс, однако для десктопных ПК схемы пришлось перенести на 14 нм.

Такая трансформация не прошла бесследно. Флагманская модель лишилась пары ядер, и теперь их осталось восемь при шестнадцати потоках. Связано это с тем, что физически увеличился размер кристалла, и при его стандартном размере не получилось вместить лишние ядра.

По сравнению с предшественниками увеличены объем и производительность кеш-памяти. Произошло изменение ее иерархии: кеш L1 увеличен на 50%, объем кеша L2 удвоен. Кеш третьего уровня изменения не затронули. AGU и Store Data теперь могут обрабатывать две операции за цикл. Контроллер памяти официально поддерживает частоту ОЗУ до 3200 МГц. Как и прежде, используется сокет LGA1200.

12 поколение Core I7

Продажи новых процессоров стартовали в ноябре 2021 года. Кодовое имя Alder Lake-S. Это первые процессоры с поддержкой памяти DDR5 и высокоскоростной шины PCI Express 5.0. Пока на рынке нет устройств, поддерживающих такую скорость — это, несомненно, разработка на перспективу. Работают новые «камни» на сокете LGA1700 в связке с чипсетами 600-й серии.

Эти процессоры вернули Intel лидерство по результатам тестов в игровых бенчмарках, однако расплачиваться приходится увеличенным энергопотреблением по сравнению с ЦП конкурентов. Новая компоновка позволяет обрабатывать данные до 24 потоков.

Двенадцатое
i7-12700K 1700 10 nm (intel 7) 2021
i7-12700KF 2021
Одиннадцатое
i7-11700K 1200 14 nm 2021
i7-11700 2021
i7-11700T 2021
Десятое
 i7-10700T 1200 14 nm 2020
i7-10700KF 2020
i7-10700K 2020
i7-10700F 2020
i7-10700 2020
Девятое
i7-9700KF 1151-2 14 nm 2019
i7-9700F 2019
i7-9700K 2018
i7-9800X 2066 2018
Восьмое
i7-8086K 1151-2 14 nm 2018
i7-8700K 2017
i7-8700 2017
i7-8700T 2017
Седьмое
i7-7820X 2066 14 nm 2017
i7-7800X 2017
i7-7740X 2017
i7-7700K 1151-1 2017
i7-7700 2017
i7-7700T 2017
Шестое
i7-6950X 2011-3 14 nm 2016
i7-6900K 2016
i7-6850K 2016
i7-6800K 2016
i7-6700K 1151-1 2015
i7-6700 2015
i7-6700T 2015
Пятое
i7-5960X 2011-3 22 nm 2014
i7-5930K 2014
i7-5820K 2014
i7-5775C 1150 14 nm 2015
Четвертое
i7-4960X 2011 22 nm 2013
i7-4930K 2013
i7-4820K 2013
i7-4790K 1150 2014
i7-4790 2014
i7-4790S 2014
i7-4790T 2014
i7-4785T 2014
i7-4770K 2013
i7-4771 2013
i7-4770 2013
i7-4770R BGA1364 2013
i7-4770S 1150 2013
i7-4770T 2013
i7-4765T 2013
Третье
i7-3970X 2011 32 nm 2012
i7-3960X 2011
i7-3930K 2011
i7-3820 2012
i7-3770K 1155 22 nm 2012
i7-3770 2012
i7-3770S 2012
i7-3770T 2012
Второе
i7-2700K 1155 32 nm 2011
i7-2600K 2011
i7-2600 2011
i7-2600S 2011
Первое
i7-995X 1366 32 nm 2011
i7-990X 2011
i7-980X 2010
i7-980 2011
i7-975E 45 nm 2009
i7-970 32 nm 2010
i7-960 45 nm 2009
i7-965E 2008
i7-950 2009
i7-940 2008
i7-930 2010
i7-920 2008
i7-880 1156 2010
i7-875K 2010
i7-870 2009
i7-870S 2010
i7-860 2009
i7-860S 2010

Также для вас могут оказаться полезными публикации «Процессоры которые подходят под сокет lga 1151» и «Битва intel core i3 против i5». Буду признателен всем, кто поделится этим постом в социальных сетях. Не забывайте подписываться на обновления блога.  До завтра!

С уважением, автор блога Андрей Андреев.

Intel решила догнать и перегнать конкурентов, отказавшись от слова нанометр

Техника

27 Июля 2021 15:10 27 Июл 2021 15:10 |

Intel решила переименовать техпроцессы проивзодства чипов – старая схема, опирающаяся на физический размер транзистора, устарела и малоинформативна. Новая тоже не дает четкого представления об изделиях на ее основе, но демонстрирует, что технологическая отсталость чипмейкера от своих конкурентов не так уж велика – это важно в связи с грядущим выходом Intel на рынок контрактного производства. Intel не теряет надежд догнать и перегнать TSMC в течение четерых следующих лет. Для этого компания внедрит EUV, перейдет к полупроводниковым технологиям уровня ангстремов и начнет использовать инновационный GAA-транзистор, с разработкой которого ей, возможно, помогла IBM.

Intel представила дорожную карту развития технологий производства микропроцессоров до 2025 г.

Согласно анонсированному плану, корпорация изменит подход к именованию собственных технологических процессов, чтобы привести их в соответствие с принятыми в отрасли, в частности, компаниями TSMC и Samsung.

Теперь в названии техпроцесса не будут фигурировать какие-либо единицы измерения длины.

Вместо этого Intel будет обозначать техпроцесс, опираясь на соотношение между производительностью и энергопотреблением чипов на его базе.

Intel также представила новую архитектуру транзисторов RibbonFET – впервые за последние 10 лет, а также рассказала о технологии PowerVia, которая предлагает новый подход к подаче питания на транзисторы очень малого размера.

История и будущее инноваций в техпроцессах Intel

Кроме того, компания заявила о планах по внедрению фотолитографии в глубоком ультрафиолете (EUV) нового поколения (High-NA EUV). Intel рассчитывает завершить этот процесс первой в отрасли при помощи оборудования нидерландской ASML.

Чипмейкер рассчитывает догнать лидера отрасли TSMC к 2024 г. по показателю совершенства внедренного техпроцесса, а в 2025 г. и вовсе вернуть себе пальму первенства. Однако стоит иметь в виду, что Intel под этим понимает отношение производительности выпускаемых процессоров к потребляемой мощности, а не, например, применение самых компактных транзисторов в мире.

Читайте также:  Как выбирать частный дом по советам специалистов и риэлтеров + видео

Новые названия техпроцессов

Итак, Intel отказывается от номенклатуры техпроцессов, которая включает слово «нанометры». 10-нанометровый процесс Enhanced SuperFin теперь называется Intel 7.

По данным корпорации, у Intel 7 показатель производительности на единицу потребляемой мощности на 10–15% выше в сравнении с предшественником – 10-нм SuperFin.

Intel 7 применяется при производстве новых процессоров семейств Alder Lake и Sapphire Rapids, которые предназначены для потребительского и серверного сегментов соответственно. Поставки чипов Alder Lake должны стартовать в 2021 г., Sapphire Rapids – в I квартале 2022 г.

Новая система именования техпроцессов Intel

Intel 4 (ранее Intel 7 нм) компания рассчитывает освоить ко второй половине 2022 г. Intel обещает прирост производительности на ватт на уровне по сравнению с предыдущим поколением на уровне 20%.

Переход на данный техпроцесс также ознаменует полную адаптацию Intel к применению технологии EUV. Именно отставание в ее освоении называют в качестве причин задержки компании с выпуском 10-нм чипов.

Технология Intel 4 будет применяться в настольных и мобильных процессорах Meteor Lake, а также серверных процессорах Granite Rapids, которые, как ожидается, появятся на рынке в 2023 г.

Техпроцесс Intel 3 (ранее Intel 7+ нм) должен обеспечить увеличить производительность на ватт примерно на 18% относительно предшественника. Процессоры на базе Intel 3 будут готовы к массовому производству во второй половине 2023 г.

Исторически в названии производственного процесса полупроводников фигурировало число, которое соответствовало длине затвора транзистора. Однако в 1994 г. производители перестали следовать этому правилу. До 2009 г.

длина затвора была меньше заявленного в названии значения, а затем «нанометры» взяли на вооружение маркетологи, из-за чего цифры в названии техпроцесса стали иметь мало общего с фактическими размерами транзисторов или плотностью их расположения в интегральной схеме.

Например, актуальный 10-нм процесс Intel (FinFET) по размеру и плотности размещения транзисторов примерно соответствует 7-нм процессу TSMC.

Решение отказаться от традиционного числового определения производственных норм в нанометрах, по всей видимости, связано с недавним решением Intel выйти на рынок контрактного производства.

Здесь американская корпорация будет напрямую конкурировать с гигантами вроде тайваньской TSMC и южнокорейской Samsung, поэтому пересмотр принципа именования производственных норм выглядит логичным – так заказчикам будет проще ориентироваться на рынке.

Ангстремная эра, транзисторы RibbonFET и технология PowerVia

Первая половина 2024 г., согласно планам Intel, ознаменуется наступлением эры ангстрема, в которой некоторые физические характеристики чипов можно будет выразить только в десятых долях нанометра – ангстремах (десятимиллиардных долях метра).

Первый техпроцесс Intel новой эры будет иметь обозначение 20A (A – angstrom, ангстрем), однако это не значит, что транзистор обязательно будет соответствующего размера.

Тем не менее, технология производства Intel 20A предусматривает использование новых транзисторов под названием RibbonFET.

Это первый транзистор Intel с кольцевым затвором (GAA, Gate-all-around) и первый транзистор новой архитектуры, выпущенный Intel с 2011 г.

RibbonFET отличается от используемых сейчас FinFET тем, что в первом каждый из четырех его каналов окружен затвором не с трех, а с четырех сторон. Такая конструкция, по оценке Intel, позволяет увеличить скорость переключения устройства при использовании такого же управляющего тока.

Схематичное изображение транзистора RibbonFET с кольцевым затвором

Кроме того, в техпроцессе Intel 20A чипмейкер планирует использовать технологию PowerVia – подачу питания с обратной стороны кристалла через межкремниевые соединения. Запуск Intel 20A ожидается в 2024 г. В частности, продукция Qualcomm будет выпускаться по техпроцессу Intel 20A, однако пока не известно, что это будут за чипы.

В зоне повышенного риска: как ИТ-компании должны защищать свой периметр

Безопасность Первый 32 нм мобильный чип Intel Celeron появится весной 2010 года

На начало 2025 г. намечено освоение техпроцесса Intel 18A. Именно тогда Intel рассчитывает внедрить EUV-литографию с высокой числовой апертурой (High-NA EUV).

Проблемы Intel и пути их решения

Intel испытала серьезные проблемы с внедрением 10-нанометрового техпроцесса, неоднократно откладывая его.

Сперва корпорация обещала начать выпуск 10-нанометровых чипов в 2015 г., после чего последовало несколько сообщений о задержке. В результате официальная дата выхода нового поколения микросхем была перенесена на 2017 г.

, но затем вновь сдвинута на второе полугодие 2018 г. В конце апреля 2018 г.

тогдашний глава компании Брайан Кржанич (Brian Krzanich), объявил о том, что Intel сможет запустить 10-нанометровые процессоры в массовое производство не ранее 2019 г.

В конце мая 2019 г. Intel официально представила свои первые массовые 10-нанометровые процессоры – чипы Ice Lake на базе новой архитектуры Sunny Cove, предназначенные для мобильных устройств.

Революция в DLP: как ИИ защищает конфиденциальные данные от утечек?

Защита данных Первый 32 нм мобильный чип Intel Celeron появится весной 2010 года

Пока Intel «покоряла» 10 нанометров и осуществляла реорганизацию производственного подразделения, его главный конкурент – компания AMD – успешно освоила нормы техпроцесса 7 нм.

В марте 2021 г. Intel анонсировала новую стратегию своего развития на ближайшие годы, получившую название IDM 2.0. Для ее реализации Intel вернула в штат нескольких ценных экс-сотрудников.

В рамках реализации стратегии чипмейкер планировал построить два новых завода за три года и $20 млрд, перейти на 7 нм в 2023 г. и стать партнером многих крупных производителей чипов, которые помогут ему в выпуске собственных процессоров.

В частности, Intel упоминала о партнерстве с IBM, которая в начале мая 2021 г. представила первый GAA-транзистор размером 2 нм и тестовый чип на его основе. Tom’s Hardware предполагает, что IBM могла оказать Intel помощь в разработке фирменных транзисторов RibboFET.

В начале июля 2021 г. CNews писал о том, что, по некоторым данным, Intel выпустит свой первый 3-нанометровый процессор в начале 2023 г., причем сделает это в сотрудничестве с TSMC. Также в июле 2021 г.

сообщалось о возможном приобретении Intel компании GlobalFoundries, входящую в тройку крупнейших мировых производителей полупроводников, за $30 млрд.

Однако позже представители последней опровергли информацию о будущей сделке.

  • Летний Аналитический Фестиваль 2022

Дмитрий Степанов

Подписаться на новости Короткая ссылка

Процессоры Intel Core i в современных ноутбуках: даем разъяснения — Технологии Onlíner

Многие пользователи знают о том, что в начале 2010 года начался массовый переход мобильных компьютеров на новую аппаратную платформу Intel, известную под кодовым названием «Calpella». В состав этой платформы входят два компонента — процессор семейства Core i и мобильный чипсет семейства 55 (чаще всего применяется HM55).

Совершенно очевидно, что эта платформа обладает определенными преимуществами перед платформой предыдущего поколения. Однако далеко не все потенциальные покупатели ноутбуков четко представляют себе, в чем же конкретно заключаются эти преимущества.

Казалось бы, тот же порядок тактовой частоты процессора (2—3 ГГц), то же количество ядер (2—4), тот же уровень тепловыделения (18—35 Вт), сравнимый уровень цен… А тут еще и довольно запутанная система нумерации новых процессоров Core i7/i5/i3, которая не позволяет новичку сделать осознанный выбор той или иной конфигурации понравившегося ноутбука. Попробуем внести ясность в эту непростую ситуацию.

Что такое Core i

Все мы хорошо знаем, что процессоры Intel серии Core 2 совершили своего рода революцию на рынке ноутбуков. Самое важное их преимущество, которое и обусловило популярность этих процессоров, — это отличное сочетание производительности и энергопотребления.

Более того, корпорация Intel выпускала огромный ассортимент процессоров с архитектурой Core 2, различающихся сразу по трем параметрам — производительности, энергопотреблению и стоимости.

Это позволило выпускать самые различные модели ноутбуков: дешевые с удовлетворительным быстродействием, производительные и одновременно доступные по цене, ультратонкие с большим временем работы от батареи, мощные рабочие станции или, например, ультрапортативные с высокой производительностью и весьма высокой стоимостью.

Тем не менее технологии не стоят на месте, и освоение корпорацией Intel новых технологий полупроводникового производства с нормами 32 нм позволило достичь более высокой степени интеграции.

Или, говоря более простым языком, — разместить на том же кристалле большее количество транзисторов при сохранении прежнего энергопотребления и размеров.

Транзисторы можно было потратить на банальное увеличение производительности, но Intel решила иначе.

Процессор семейства Core i (кодовое название Nehalem) имеет более сложную архитектуру по сравнению с предшественниками.

Многие склонны называть его наиболее инновационным из всех продуктов Intel, выпущенных за последние 10 лет. Все дело в том, что этот процессор устроен принципиально иначе, чем все предыдущие.

Ведь помимо собственно вычислительных ядер, коих может быть от одного до шести, а также их общего кэша, он содержит:

  • 1) контроллер памяти DDR3 (поддержка от 8 до 16 ГБ памяти при наличии у ноутбука двух слотов SO-DIMM);2) контроллер шины PCI Express 2.0 (используется для подключения дискретной видеокарты, если таковая имеется);3) контроллер шины DMI (для подключения к другим микросхемам системной логики);
  • 4) графическое ядро Intel HD Graphics (по сути — встроенная видеокарта).

Фактически процессор семейства Core i содержит компоненты, которые раньше входили в микросхему «северного моста», причем при сохранении прежнего энергопотребления. Вот вам и важное преимущество: суммарное потребление энергии системы снижается, система охлаждения ноутбука упрощается, сокращается размер системной платы, что позволяет уменьшить габариты корпуса.

Увеличилась ли производительность новой платформы? Безусловно. Несмотря на то, что вычислительные возможности каждого ядра практически не изменились (микроархитектура была доработана, но незначительно), у Core i есть несколько интересных нововведений, особенно полезных для мобильных компьютеров.

Читайте также:  Swords and soldiers — барбекю в обиду не дам

Во-первых, это Hyper-Treading — технология виртуальной многопоточности. Грубо говоря, каждое ядро процессора Core i представляется в системе двумя виртуальными процессорами, каждый из которых выполняет свой поток команд.

Это стало возможным за счет того, что при выполнении одного потока команд значительная часть вычислительных ресурсов (а процессор способен исполнять несколько инструкций параллельно) может простаивать.

Логично, что их можно задействовать для выполнения другого потока команд, что, собственно, и делает процессор Core i.

Означает ли это удвоение производительности? В общем случае нет — далеко не всегда можно так удачно совместить два потока команд, чтобы полностью задействовать все ресурсы.

Кроме того, многие программы даже если и используют многопоточность, то не оптимальным образом.

Реальный, до 50—80%, выигрыш от Hyper-Treading получают программы, выполняющие интенсивные вычисления в несколько параллельных потоков (математические, финансовые, графические пакеты, программы кодирования и сжатия видео).

Во-вторых, это Turbo Boost — динамическое управление частотой всех ядер с возможностью как снижения, так и увеличения частоты.

Многим известно, что процессоры семейства Core 2 динамически управляют своей частотой, чтобы экономить энергию при отсутствии нагрузки.

В процессорах Core i эта идея получила дальнейшее развитие: управление всеми ядрами выполняется независимо — как по частоте, так и по напряжению. При снижении нагрузки ядра начинают работать медленнее, энергопотребление понижается.

Однако у Core i действует и обратный механизм: если нагрузка повышается, а энергопотребление не достигает установленного производителем предела (обычно это 35 Вт), то частота ядер повышается — процессор самостоятельно разгоняется.

Особенно актуален этот механизм для программ, интенсивно нагружающих процессор, но только в один-два потока: часть ядер понижает частоту, а другая часть, наоборот, повышает, и мы получаем видимый прирост скорости работы конкретной программы.

Третий важный момент связан с организацией кэша — специального буфера внутри процессора, который используется для временного хранения часто запрашиваемых из памяти данных.

У Core i введена трехуровневая система кэширования, когда у каждого ядра имеется два уровня кэша, а кэш третьего уровня, большего объема, используется всеми ядрами совместно.

Для программ, интенсивно использующих память, объем кэша процессора имеет важное значение.

Таким образом, мобильные процессоры семейства Core i при схожей микроархитектуре устроены значительно сложнее, чем Core 2.

Каждое вычислительное ядро такого процессора способно выполнять работу сразу двух виртуальных процессоров (пусть и не с такой же эффективностью, как два раздельных ядра), что само по себе позволяет получить прирост до 80% в программах, оптимизированных под многопоточную архитектуру. При этом за счет внутреннего разгона процессор способен увеличивать скорость работы программ, не использующих многопоточность.

Реальный прирост быстродействия по сравнению с Core 2 составляет от 10 до 50% в зависимости от конкретных программ (при равных частотах и объемах кэша).

Энергопотребление, а точнее количество рассеиваемого тепла, у новых процессоров не выше, чем у старых, хотя они содержат несколько дополнительных устройств.

Это позволяет выпускать ноутбуки таких же или даже меньших габаритов, не проигрывая, а скорее выигрывая в быстродействии и времени автономной работы.

Встроенная видеокарта

Процессоры семейства Core i, за исключением первых моделей Core i7, оснащаются (впервые для платформы x86!) встроенным графическим ядром. Однако, вопреки существующему заблуждению, графика не встроена в один с процессором кристалл — пока это технически невозможно.

Графическое ядро выполнено как отдельный кристалл, который размещен на одной подложке с процессором и накрыт общей теплорассеивающей крышкой.

Разъемы для монитора и встроенного экрана расположены на системной плате ноутбука, встроенная видеокарта подключена к ним при помощи специальной шины.

Отметим несколько особенностей видеокарты, встроенной в процессор семейства Core i. Это новое графическое ядро 5-го поколения, разработанное Intel в соответствии с современными технологиями 3D-графики и обработки видео.

Видеокарта Intel HD Graphics, называемая также GMA HD или GMA 5700MHD, поддерживает аппаратное ускорение DirectX 10 и видеокодеков H.264, VC-1, MPEG1/2/4.

А значит, позволяет не только смотреть видео высокого качества без загрузки процессора, но и играть в современные игры, пусть и с минимальными настройками.

К сожалению, новое 3D-ядро не отличается по архитектуре от предыдущей разработки Intel, ядра видеокарты GMA 4500MHD. Вычислительные возможности увеличены на 20%, переделан блок обработки видео.

Однако за счет увеличения тактовой частоты, которая к тому же динамически изменяется в зависимости от нагрузки (технология Turbo Boost применима и здесь), а также более тесной интеграции с процессором, производительность встроенной видеокарты Intel стала существенно выше.

Фактически Intel HD Graphics уже сравнима со встроенной графикой NVIDIA GeForce 9400M (платформа Ion для нетбуков) и ATI Mobility Radeon HD 3200 и уступает только новой встроенной графике чипсетов AMD серии 880.

(Правда, следует учесть, что энергоэффективные процессоры семейства Core i, применяемые в ультратонких ноутбуках нового поколения, в целях экономии энергии понижают частоту встроенной графики в 3 раза, что приводит к пропорциональному снижению быстродействия в 3D.)

Важнейшей особенностью встроенной видеокарты является возможность ее отключения без перезагрузки ноутбука.

Это позволяет штатными средствами реализовать в любом портативном компьютере гибридную графику — переключение между встроенной и дискретной видеокартами.

Последнюю за ненадобностью можно отключить (вручную или автоматически), что позволяет продлить работу от батареи на несколько часов. Обратите только внимание, что не все ноутбуки, особенно первых серий, данную возможность поддерживают.

Какой процессор выбрать?

Итак, вы уже знаете об основных особенностях процессоров семейства Core i. Теперь разберемся, чем отличаются процессоры различных серий. Понятно, что в них будет различной тактовая частота, поскольку это основная характеристика, влияющая на производительность процессора. Но дело не только в ней.

Все процессоры нового семейства делятся на пять неравных линеек: Core i7, Core i5, Core i3, Pentium и Celeron (да-да, старые названия бюджетных процессоров остались неизменными).

В данном случае номер, идущий после буквы «i», означает только ценовой класс процессора, но никак не набор определенных характеристик.

Например, в старшей линейке, Core i7, присутствуют процессоры с сильно различающимися характеристиками, построенные на совершенно различных кристаллах.

В настоящий момент Intel предлагает только три модели 4-ядерных процессоров, и все они относятся к серии Core i7:

Сразу бросаются в глаза три факта. Во-первых, эти процессоры выполнены по технологии предыдущего поколения и имеют достаточно высокое тепловыделение, из-за чего в большинстве ноутбуков их применение невозможно (не хватает мощности системы охлаждения).

Во-вторых, номинальная тактовая частота непривычно низка, на уровне самых дешевых процессоров предыдущего поколения. Это связано с тем же ограничением по тепловыделению — 4 ядра с кэшем большой емкости при полной нагрузке потребляют достаточно много. В-третьих, встроенной графики у них нет (иначе не вложиться в рамки тепловыделения).

Вместе с тем у них есть поддержка CrossFire и SLI — за счет того, что встроенный контроллер PCI Express способен подключать две видеокарты.

В связи с этим перечисленные в таблице 4-ядерные процессоры пока нашли ограниченное применение.

Покупать ноутбук на базе такого процессора имеет смысл только в том случае, если вы будете работать с программами, в полной мере использующими все 8 логических ядер процессора (игры в общем случае к этой категории не относятся).

Либо ноутбук относится к геймерскому классу и оснащается двумя видеокартами в связке SLI или CrossFire. В противном случае возможности процессоров Core i7 будут невостребованы.

Перечислим 2-ядерные процессоры Core i7. Они поделены на две неравные группы — стандартные процессоры с высоким быстродействием и таким же высоким энергопотреблением и две серии низковольтных моделей (ULV) с пониженным энергопотреблением:

Мы можем заметить, что в таблице имеется только один процессор со стандартным (35 Вт) тепловыделением.

Остальные за счет снижения частоты как основного процессора, так и графического чипа потребляют в полтора-два раза меньше.

Такие процессоры устанавливаются в ноутбуки с тонким корпусом, в котором невозможно реализовать эффективную систему охлаждения, либо в ноутбуки, для которых важно максимальное время работы от батареи.

При этом, несмотря на низкую номинальную частоту, они будут обеспечивать неплохой уровень производительности за счет технологии Turbo Boost, а наличие встроенной видеокарты позволит снизить уровень энергопотребления. Поэтому основной состав линейки Core i7-600 ориентирован на дорогостоящие бизнес-ноутбуки, сочетающие в себе высокую мобильность и хороший уровень производительности.

Семейство Core i5 также состоит из стандартных и низковольтных моделей:

Как видим, линейка весьма разношерстная. Модели 540M и 520M отличаются только частотами. Это универсальные процессоры среднего ценового диапазона, наиболее сбалансированные по соотношению цена/производительность. При покупке ноутбука средней стоимости ($800—900) для профессиональной деятельности ориентироваться следует именно на один из этих процессоров.

Процессор i5-430M по сути ближе к линейке i3, чем i5. У него имеется поддержка Turbo Boost, но из-за небольшой разницы частот эффект от нее будет минимальным. Также отключена виртуализация ввода/вывода, из-за чего ноутбук с таким процессором нежелательно использовать для задач, требующих применения виртуальной машины.

Процессоры с суффиксом UM ориентированы на ультратонкие ноутбуки среднего ценового класса. Они имеют низкую номинальную частоту, но способны увеличивать ее почти в два раза за счет Turbo Boost.

Семейство Core i3 является младшим в линейке Core i. В него входят всего три модели: две ориентированы на недорогие, но вполне производительные ноутбуки для домашних и офисных задач, а одна, низковольтная, — на лэптопы среднего класса в тонком корпусе.

Из-за отсутствия Turbo-поддержки эти процессоры не могут эффективно использовать возможности по разгону ядер, а потому в некоторых задачах будут проигрывать моделям серий 500.

Читайте также:  Все-таки он вертится. Обзор ультрабука Dell XPS 12

Помимо Core i ноутбуки будут комплектоваться процессорами семейств Celeron и Pentium, построенными на той же архитектуре, но лишенными некоторых важных функций, которые влияют на производительность. Анонсированы три модели, причем только одна из них относится к классу стандартных процессоров:

Процессор Celeron серии P отличается от старших собратьев отсутствием поддержки Hyper-Treading. Следовательно, он обрабатывает только два потока одновременно и не может максимально эффективно использовать все вычислительные ресурсы.

Можно предположить, что по производительности он примерно соответствует младшим процессорам Core 2 Duo серии T5000/T6000, что уже неплохо, поскольку стоимость первого Celeron нового поколения значительно ниже, чем процессоров Core.

Более того, мы рискнем предположить, что отсутствие Hyper-Treading и Turbo Boost при одновременном наличии Speedstep (от недостатка последней страдали процессоры Celeron на основе ядра Core 2) приведет к достаточно низкому усредненному энергопотреблению этого процессора. А значит, он идеально подойдет для бюджетных ноутбуков, от которых не требуется высокого быстродействия.

Процессоры серии U не поддерживают Hyper-Treading и Turbo Boost, а следовательно, имеют серьезные ограничения в производительности.

Их удел — недорогие потребительские ноутбуки в ультратонком корпусе, располагающиеся между классическими нетбуками и полноценными ноутбуками.

По производительности они будут примерно соответствовать предшествующим моделям Celeron и Pentium серий SU, а по экономичности и стоимости — превосходить их.

Выводы

Итак, новая платформа Intel продолжает набирать популярность у производителей ноутбуков. К основным ее преимуществам следует отнести несущественное повышение производительности — такая цель, в общем-то, и не ставилась.

Благодаря более гибкому управлению энергопотреблением отдельных ядер и интеграции ядра видеокарты новые процессоры Intel обеспечивают более длительное время работы ноутбуков от аккумулятора.

Достигается это как прямым путем, за счет снижения энергопотребления самого процессора, так и косвенным, за счет интеграции в процессор большего количества логики.

Заметим также, что процессоры семейства Core фактически делятся на 4 неравные группы. В первую входят модели Core i7 серии 700, 800 и 900, которые содержат 4 ядра и «двойной» контроллер PCI Express.

Эти процессоры ориентированы на рабочие станции и геймерские ноутбуки, для которых фактор энергопотребления не имеет никакого значения. Вторая группа, самая многочисленная — двухъядерные процессоры для ноутбуков среднего класса, оптимально сбалансированные по соотношению скорость/экономичность.

Третья группа состоит из процессоров с пониженным энергопотреблением (Ultra Low Voltage, ULV), которые ориентированы на ноутбуки с минимальным энергопотреблением. Заметим, что за счет технологии Turbo Boost частично решается проблема с их производительностью.

Четвертая группа, бюджетные процессоры с урезанным функционалом, на момент подготовки статьи была мало представлена, но в ближайшем будущем станет весьма популярным решением для ноутбуков минимальной стоимости.

Новости по теме «Intel работает над 22 нм SoC для мобильных устройств» — МИР NVIDIA

МИР NVIDIAНовостиIntel работает над 22 нм SoC для мобильных устройств

Процессоры Intel Rocket Lake-S должны появиться в течение квартала, однако уже есть некоторая информация об их наследнике, Alder Lake-S.

Известный инсайдер TUM_APISAK написал пост в Twitter, в котором сообщил, что процессоры AlderLake-S будут иметь 16 ядер и 24 потока. Эта серия CPU привнесёт множественные изменения.

CPU Intel

Процессоры AlderLake-S будут изготавливаться по 10 нм нормам, а их архитектура будет включать как высокопроизводительные ядра, так и медленные энергоэффективные. Архитектура процессора похожа на big.LITTLE от ARM. У чипа Intel будет 8 ядер Golden Cove, которые и дадут 16 потоков, а также 8 ядер Gracemont с 8 потоками.

Модель процессора, о которой говорит TUM_APISAK, является ранним инженерным образцом, который даёт частоту лишь 1,4 ГГц. Вполне возможно, что это частота энергоэффективных ядер Gracemont.

Производительность процессора пока не впечатляет. В тесте Geeksbench 5 он набрал 996 баллов в одноядерном тесте и 6931 балл в многоядерном.

комментировать ​похожие новости

Как известно, компания Intel готовит новые бюджетные процессоры с кодовым именем Gemini Lake, и эти чипы будут иметь ряд усовершенствований.

Ранее обозреватели полагали, что системы-на-чипе Gemini Lake, которые будут продаваться под брендами Celeron и Pentium, не сильно будут отличаться от нынешнего поколения Apollo Lake. Но оказалось, что изменения будут. Об этих изменения сообщают энтузиасты, которые анализирует выпускаемые Intel изменения к ядру операционной системы Linux.

Так, новые процессоры получат 4-путевой блок декодирования, что на 33% шире, чем к Apollo Lake и вдвое больше, чем у Braswell.

Кроме того, Gemini Lake получат улучшенные возможности аппаратного декодирования видео. Так, чип будет уметь декодировать 10-битные изображения (1,07 миллиарда цветов) в формате VP9 в профиле Profile2.

Для сравнения, его предшественник поддерживал лишь аппаратное декодирование VP9 8-bit Profile0. Судить об этом можно благодаря журналу изменений ядра, где сказано: «Добавлена поддержка Gemini Lake (aka. GLK) — декодирование H.

264/MPEG-2/VC-1/JPEG/VP8/HEVC/HEVC 10-bit/VP9/VP9 10-bit».

комментировать ​похожие новости

Новые процессоры Atom от Intel с микроархитектурой Braswell должны появиться в продаже в составе ноутбуков и нетбуков в третьем квартале этого года. Эти чипы будут выпущены под брендами Pentium и Celeron, и будут содержать 4 или 2 ядра.

Встроенная графическая подсистема будет основана на Low Power Gen 8. При своих 16 исполнительных блоках и поддержке DirectX 12 и Open GL 4.2., новый GPU будет способен выводить картинку разрешением до 4Kx2K.

Платформа будет поддерживать DDR3L частотой 1600 МГц в форм-факторе SODIMM и сможет адресовать до 8 ГБ памяти, чего вполне достаточно для данного сегмента устройств. Платформа также получит 4×1 PCIe 2.

0, 2 порта SATA 3.0, а также поддержку eMMC 4.51 и SD Card 3.01. Всего на платформе предусматривается 5 портов USB, 4 из которых — USB 3.0 и один USB 2.0.

И, конечно же, имеется аудиопроцессор высокой чёткости.

К системе на процессоре Braswell можно подключить до 3 дисплеев с максимальным разрешением 4Kx2K. В первую очередь будет поддерживаться стандарт eDP 1.4 с разрешением до 2560×1440 пикс., дополнительно же можно будет подключить ещё два монитора посредством HDMI или DisplayPort.

комментировать ​похожие новости

Следующее поколение настольных и мобильных процессоров семейства Atom будет изготавливаться по 14 нм техпроцессу, имеет название Cherry Trail и запланировано к выходу в конце 2014 года. Компания Intel активно трудится над ускорением разработок чипов Atom, таким образом, чипы для ноутбуков Broadwell и Cherry Trail будут выпущены в один год, оба по 14 нм процессу.

Для ноутбуков будет подготовлен ряд SoC Cherry View, которая основана на новом ядре Airmont. В свою очередь Cherry Trail станет процессорами ориентированными для планшетных ПК. В конце следующего года, вероятнее, в сентябре, будет также выпущена и система-на-чипе архитектуры Moorefield, предназначенная для смартфонов.

По сравнению с Bay Trail TDP новой платформы должен упасть, благодаря меньшим электрическим потерям 14 нм техпроцесса, а значит, разработчики смогут предложить больше решений на базе Atom с пассивны охлаждением.

Кроме того 14 нм техпроцесс будет означать для Intel ещё один козырь в борьбе с ARM, поскольку в следующем году лидеры этого рынка, включая Qualcomm, Samsung и MediaTek, только начнут применять в своих чипах 20 нм узлы.

Однако Intel ещё только предстоит интегрировать свои SoC с LTE модемами, что традиционно является сложной задачей. По сути, сейчас лишь Qualcomm имеет процессор со встроенным LTE модемом.

Так что даже переход на 14 нм производство не сильно облегчит для Intel конкурентную борьбу на рынке смартфонов, и лишь в будущем мы сможем узнать, заинтересуются ли производители устройств новыми микросхемами Intel. Ждать же осталось ещё целый год.

комментировать ​похожие новости

Компании TSMC и GlobalFoundries планируют начать производство 20 нм мобильных чипов в следующем году, и эта технология должна быть применена для производства процессоров ARM нового поколения.

В настоящее время 2,3 ГГц является предельной частотой для 28 нм Snapdragon 800 и Tegra 4i (Grey), которые выйдут в конце этого или начале следующего года.

И как обычно, чтобы преодолеть данное ограничение, необходимо использовать техпроцесс с меньшим размером транзисторов. 20 нм процесс TSMC позволит на 30% поднять скорость и в 1,9 раза увеличить плотность при 25% снижении энергопотребления.

Тридцатипроцентное ускорение означает, что частота SoCARM будет находиться на уровне 3 ГГц со значительным увеличением числа транзисторов, используемых в основном под нужды GPU.

Скорее всего, именно таким образом компания NVIDIA и обеспечит установку видеоядра Kepler в процессор Logan, однако пока подтверждения этому нет.

Снижение энергопотребления на 25% будет означать на четверть увеличенный срок автономной работы, а поскольку малый срок автономной работы является основным недостатком смартфонов, данная модификация будет крайне важной для потребителей.

Такой технологический переход значительно улучшит позиции альянса ARM в конкуренции с производителями x86 процессоров. Но не стоит забывать, что Intel и AMD не дремлют.

В 2014 году Intel планирует выпустить свой 14 нм Atom, предназначенный для планшетов и смартфонов, а AMD, в то же время, при производственной поддержке GlobalFoundries, собирается выпустить свои 14 нм чипы для планшетов и ноутбуков.

комментировать ​похожие новости

Новый исполнительный директор Intel имеет хитрый план по ускорению выпуска чипов для смартфонов, планшетов и носимых устройств.

Брайан Крзанич, занявший кресло директора 2 месяца назад, сообщил на пресс-конференции, что он менее заинтересован в выходе на рынок телевизионных приставок, чем его предшественник.

«Мы считаем, что у нас есть превосходный пользовательский интерфейс, и технология сжатия-восстановления фантастична, но в конце концов, если мы хотим предоставить этот сервис, всё упирается в контент. Мы не игроки на рынке контента», — заявил новый директор.

Ссылка на основную публикацию
Adblock
detector